Proceedings of the 28-th International Conference on Formal Power Series and Algebraic Combinatorics
4-8 Jul 2016 Vancouver, British Columbia (Canada)
Symmetric Fundamental Expansions to Schur Positivity
Austin Roberts  1, 2  
1 : 1QBit Information Technologies, Vancouver, BC
2 : Highline College [Des Moines]  (HC)  -  Website
2400 S. 240th St. Des Moines, WA 98198 -  États-Unis

We consider families of quasisymmetric functions with the property that if a symmetric function f is a positive sum of functions in one of these families, then f is necessarily a positive sum of Schur functions. Furthermore, in each of the families studied, we give a combinatorial description of the Schur coefficients of f. We organize six such families into a poset, where functions in higher families in the poset are always positive integer sums of functions in each of the lower families. 



  • Poster
Online user: 1