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Yang-Baxter basis of Hecke algebra and
Casselman’s problem (extended abstract)

Maki Nakasuji1† and Hiroshi Naruse2‡
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Abstract. We generalize the definition of Yang-Baxter basis of type A Hecke algebra introduced by A.Lascoux,
B.Leclerc and J.Y.Thibon (Letters in Math. Phys., 40 (1997), 75–90) to all the Lie types and prove their duality. As
an application we give a solution to Casselman’s problem on Iwahori fixed vectors of principal series representation
of p-adic groups.

Résumé. Nous généralisons la définition de la base de l’algèbre de Hecke de Yang-Baxter de type A introduit par
A.Lascoux, B.Leclerc and J.Y.Thibon (Letters in Math. Phys., 40 (1997), 75–90) à tous les types de Lie et prouvons
la dualité. Comme application nous donnons une solution du problème de Casselman sur les vecteurs fixés par le
sous-groupe d’Iwahori de la série principale des groupes p-adiques.
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1 Introduction
Yang-Baxter basis of Hecke algebra of typeAwas defined in the paper of Lascoux-Leclerc-Thibon [LLT].
There is also a modified version in [Las]. First we generalize the latter version to all the Lie types. Then
we will solve the Casselman’s problem on the basis of Iwahori fixed vectors using Yang-Baxter basis and
Demazure-Lusztig type operator. This paper is an extended abstract and the detailed proofs will appear
in [NN].

2 Generic Hecke algebra
2.1 Root system, Weyl group and generic Hecke algebra
Let R = (Λ,Λ∗, R,R∗) be a (reduced) semisimple root data cf. [Dem]. More precisely Λ ' Zr is a
weight lattice with rank Λ = r. There is a pairing < , >: Λ∗ × Λ → Z. R ⊂ Λ is a root system with
simple roots {αi}1≤i≤r and positive roots R+. R∗ ⊂ Λ∗ is the set of coroots, and there is a bijection
R → R∗, α 7→ α∗. We also denote the coroot α∗ = hα. The Weyl group W of R is generated by
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simple reflections S = {si}1≤i≤r. The action of W on Λ is given by si(λ) = λ− < α∗i , λ > αi for
λ ∈ Λ. We define generic Hecke algebra Ht1,t2(W ) over Z[t1, t2] with two parameters t1, t2 as follows.
Generators are hi = hsi , with relations (hi − t1)(hi − t2) = 0 for 1 ≤ i ≤ r and the braid relations
hihj · · ·︸ ︷︷ ︸
mi,j

= hjhi · · ·︸ ︷︷ ︸
mi,j

, wheremi,j is the order of sisj for 1 ≤ i < j ≤ r. We need to extend the coefficients

to the quotient field of the group algebra Z[Λ]. An element of Z[Λ] is denoted as
∑
λ∈Λ

cλe
λ. The Weyl

group acts on Z[Λ] by w(eλ) = ewλ. We extend the coefficient ring Z[t1, t2] of Ht1,t2(W ) to

Qt1,t2(Λ) := Z[t1, t2]⊗Q(Z[Λ])

where Q(Z[Λ]) is the quotient field of Z[Λ].

H
Q(Λ)
t1,t2 (W ) := Qt1,t2(Λ)⊗Z[t1,t2] Ht1,t2(W ).

For w ∈ W , an expression of w = si1si2 · · · si` with minimal number of generators sik ∈ S is called a
reduced expression in which case we write `(w) = ` and call it the length of w. Then hw = hi1hi2 · · ·hi`
is well defined and {hw}w∈W forms a Qt1,t2(Λ)-basis of HQ(Λ)

t1,t2 (W ).

2.2 Yang-Baxter basis and its properties
Yang-Baxter basis was introduced in the paper [LLT] to investigate the relation with Schubert calculus.
There is also a variant in [Las] for type A case. We generalize that results to all Lie types.

For λ ∈ Λ, we define E(λ) = e−λ − 1. Then E(λ+ ν) = E(λ) + E(ν) + E(λ)E(ν). In particuar, if
λ 6= 0, 1

E(λ) + 1
E(−λ) = −1.

Proposition 1 For λ ∈ Λ, if λ 6= 0, let hi(λ) := hi + t1+t2
E(λ) . Then these satisfy the Yang-Baxter

relations, i.e. if we write [p, q] := pλ + qν for fixed λ, ν ∈ Λ, the following equations hold. We assume
all appearance of [p, q] is nonzero.

hi([1, 0])hj([0, 1]) = hj([0, 1])hi([1, 0]) if mi,j = 2

hi([1, 0])hj([1, 1])hi([0, 1]) = hj([0, 1])hi([1, 1])hj([1, 0]) if mi,j = 3

hi([1, 0])hj([1, 1])hi([1, 2])hj([0, 1]) = hj([0, 1])hi([1, 2])hj([1, 1])hi([1, 0]) if mi,j = 4

hi([1, 0])hj([1, 1])hi([2, 3]) hj([0, 1])hi([1, 3])hj([1, 2])

×hj([1, 2])hi([1, 3])hj([0, 1]) = ×hi([2, 3])hj([1, 1])hi([1, 0]) if mi,j = 6

Proof: We can prove these equations by direct calculations. 2

Remark 1 In [Che] I. Cherednik treated Yang-Baxter relation in more general setting. There is also a
related work [Kat] by S. Kato and the proof of Theorem 2.4 in [Kat] suggests a uniform way to prove
Yang-Baxter relations without direct calculations.

We use the Bruhat order x ≤ y on elements x, y ∈ W (cf.[Hum]). Following [Las] we define the
Yang-Baxter basis Yw for w ∈W recursively as follows.
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Ye := 1, Yw := Yw′(hi + t1+t2
w′E(αi)

) if w = w′si > w′.

Using the Yang-Baxter relation above it is easy to see that Yw does not depend on a reduced expression
of w. As the leading term of Yw with respect to the Bruhat order is hw, they also form a Qt1,t2(Λ)-basis
{Yw}w∈W ofHQ(Λ)

t1,t2 (W ). We are interested in the transition coefficients p(w, v) and p̃(w, v) ∈ Qt1,t2(Λ)
between the two basis {Yw}w∈W and {hw}w∈W , i.e.

Yv =
∑
w≤v

p(w, v)hw, and hv =
∑
w≤v

p̃(w, v)Yw.

Take a reduced expression of v e.g. v = si1 · · · si` where ` = `(v) is the length of v (cf. [Hum]). Then
Yv is expressed as follows.

Yv =
∏̀
j=1

(
hij +

t1 + t2
E(βj)

)
where βj := si1 · · · sij−1

(αij ) for j = 1, . . . , `. The set R(v) := {β1, . . . , β`} ⊂ R+ is independent of
the reduced expression of v. The Yang-Baxter basis defined in [LLT] is normalized as follows.

Y LLTv :=

∏̀
j=1

E(βj)

t1 + t2

Yv =
∏̀
j=1

(
E(βj)

t1 + t2
hij + 1

)
.

Remark 2 The relation to K-theory Schubert calculus is as follows. If we set t1 = 0, t2 = −1 and
replacing αi by −αi. Then the coefficient of hw in Y LLTv is the localization ψw(v) at v of the equivariant
K-theory Schubert class ψw (cf. [LSS]).

Let w0 be the longest element in W . Define Qt1,t2(Λ)-algebra homomorphism Ω : H
Q(Λ)
t1,t2 → H

Q(Λ)
t1,t2

by Ω(hw) = hw0ww0
. Let ? be the ring homomorphism on Z[Λ] induced by ?(eλ) = e−λ and extend to

Qt1,t2(Λ).

Proposition 2 (Lascoux [Las] Lemma 1.8.1 for type A case) For v ∈W ,

Ω(Yw0vw0
) = ?[w0(Yv)]

where W acts only on the coefficients.

Proof: When `(v) > 0 there exists s ∈ S such that v = v′s > v′. Using the induction assumption on v′,
we get the formula for v. 2

Taking the coefficient of hw in the above equation, we get

Corollary 1
p(w0ww0, w0vw0) = ?[w0p(w, v)].
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2.3 Inner product and orthogonality

Define inner product ( , )H on HQ(Λ)
t1,t2 (W ) by (f, g)H := the coefficient of hw0

in fg∨, where g∨ =∑
cwhw−1 if g =

∑
cwhw. It is easy to see that (fhs, g)H = (f, ghs)

H for f, g ∈ H
Q(Λ)
t1,t2 (W ) and

s ∈ S. There is an involutionˆ: H
Q(Λ)
t1,t2 → H

Q(Λ)
t1,t2 defined by ĥi = hi − (t1 + t2), t̂1 = −t2, t̂2 = −t1. It

is easy to see that ĥshs = −t1t2 for s ∈ S.
The following proposition is due to A.Lascoux for the type A case [Las] P.33.

Proposition 3 For all v, w ∈W ,
(hv, ĥw0w)H = δv,w.

Proof: We can use induction on the length `(v) of v to prove the equation.
2

We have another orthogonality between Yv and w0(Yw0w).

Proposition 4 (Type A case was due to [LLT] Theorem 5.1 , [Las] Theorem 1.8.4.)
For all v, w ∈W ,

(Yv, w0(Yw0w))H = δv,w.

Proof: We use induction on `(v) and use the fact that if s ∈ S and u ∈ W , then Yuhs = aYus + bYs for
some a, b ∈ Qt1,t2(Λ).

2

2.4 Duality between the transition coefficients
Recall that we have two transition coefficients p(w, v), p̃(w, v) ∈ Qt1,t2(Λ) defined by the following
expansions.

Yv =
∑
w≤v

p(w, v)hw

hv =
∑
w≤v

p̃(w, v)Yw

Below gives a relation between them.

Theorem 1 (Lascoux [Las] Corollary 1.8.5 for type A case) For w, v ∈W ,

p̃(w, v) = (−1)`(v)−`(w)p(vw0, ww0).

Proof: We will calculate (hv, w0(Yw0w))H in two ways. As hv =
∑
w≤v

p̃(w, v)Yw,

(hv, w0(Yw0w))H = p̃(w, v)

by the orthogonality on Yv (Proposition 4). On the other hand, as hi + t1+t2
E(β) = ĥi − t1+t2

E(−β) for β ∈ R,

we can expand Yv in terms of ĥw as follows.
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Yv =
∑
w≤v

(−1)`(v)−`(w) ? [p(w, v)]ĥw.

So we have
w0(Yw0w) =

∑
w0v≤w0w

(−1)`(v)−`(w)w0[?p(w0v, w0w)]ĥw0v.

Then using the orthogonality on hv (Proposition 3) and Corollary 1,

(hv, w0(Yw0w))H = (−1)`(v)−`(w)w0[?p(w0v, w0w)] = (−1)`(v)−`(w)p(vw0, ww0).

The theorem is proved.
2

2.5 Recurrence relations
Here we give some recurrence relations on p(w, v) and p̃(w, v).

Proposition 5 (left p) For w ∈W and s ∈ S, if sv > v then

p(w, sv) =

{
t1+t2
E(αs)

s[p(w, v)]− t1t2s[p(sw, v)] if sw > w

(t1 + t2)( 1
E(αs)

+ 1)s[p(w, v)] + s[p(sw, v)] if sw < w.

Proof: By the definition we have Ysv = Yss[Yv] from which we can deduce the recurrence formula. 2

We note that by this recurrence we can identify p(w, v) as a coefficient of transition between two bases
of the space of Iwahori fixed vectors cf. Theorem 3 below.

Proposition 6 (right p) For w ∈W and s ∈ S, if vs > v then

p(w, vs) =

{
t1+t2
vE(αs)

p(w, v)− t1t2p(ws, v) if ws > w

(t1 + t2)( 1
vE(αs)

+ 1)p(w, v) + p(ws, v) if ws < w.

Proof: We can use the equation Yvs = Yvv[Ys] and taking the coefficient of hw, we get the formula.
2

Proposition 7 (left p̃) For w ∈W and s ∈ S, if sv > v then

p̃(w, sv) =

{
− t1+t2
E(αs)

p̃(w, v) + (1 + t1+t2
E(αs)

)(1 + t1+t2
E(−αs) )s[p̃(sw, v)] if sw > w

− t1+t2
E(αs)

p̃(w, v) + s[p̃(sw, v)] if sw < w.

Proof: We can prove the recurrence relation using Corollary 2 below. 2

Proposition 8 (right p̃) For w ∈W and s ∈ S, if vs > v then

p̃(w, vs) =

{
− t1+t2
wE(αs)

p̃(w, v) + (1 + t1+t2
wE(αs)

)(1 + t1+t2
wE(−αs) )p̃(ws, v) if ws > w

− t1+t2
wE(αs)

p̃(w, v) + p̃(ws, v) if ws < w.

Proof: We can prove the recurrence relation using Corollary 2 below. 2
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3 Kostant-Kumar’s twisted group algebra
LetQKKt1,t2(W ) := Qt1,t2(Λ)#Z[W ] be the (generic) twisted group algebra of Kostant-Kumar. Its element

is of the form
∑
w∈W

fwδw for fw ∈ Qt1,t2(Λ) and the product is defined by

(
∑
w∈W

fwδw)(
∑
u∈W

guδu) =
∑

w,u∈W
fww(gu)δwu.

Define yi ∈ QKKt1,t2(W ) (i = 1, . . . , r) by

yi := Aiδi +Bi where Ai :=
t1 + t2e

−αi

1− eαi
, Bi :=

t1 + t2
1− e−αi

.

Proposition 9 We have the following equations.
(1) (yi − t1)(yi − t2) = 0 for i = 1, . . . , r.
(2) yiyj · · ·︸ ︷︷ ︸

mi,j

= yjyi · · ·︸ ︷︷ ︸
mi,j

, where mi,j is the order of sisj .

Proof: These equations can be shown by direct calculations. 2

By this proposition we can define yw := yi1 · · · yi` for a reduced expression w = si1 · · · si` . These
{yw}w∈W become a Qt1,t2(Λ)-basis of QKKt1,t2(W ).

Remark 3 This operator yi can be seen as a generic Demazure-Lusztig operator. When t1 = −1, t2 = q,
it becomes yqsi in Kumar’s book[Kum](12.2.E(9)). We can also set Ai which satisfies

AiA−i =
(t1 + t2e

−αi)(t1 + t2e
αi)

(1− eαi)(1− e−αi)
.

For example, if we set Ai = t1+t2e
αi

1−eαi and t1 = q, t2 = −1 and replace αi by −αi, it becomes Lusztig’s
Tsi [Lu1]. If we setAi = − t1+t2e

αi

1−e−αi and t1 = −1, t2 = v and replace αi by−αi, it becomes Ti in [BBL].

We can define a Qt1,t2(Λ)-module isomorphism Φ : QKKt1,t2(W ) → H
Q(Λ)
t1,t2 (W ) by Φ(yw) = hw.

Let ∆si := Aiδi. Define A(w) :=
∏

β∈R(w)

t1 + t2e
−β

1− eβ
and ∆w := A(w)δw. Then it becomes that

∆si1
· · ·∆si`

= A(w)δw = ∆w. In particular, ∆si ’s satisfy the braid relations. We can show below by
induction on length `(w).

Theorem 2 For w ∈W , we have
Φ(∆w) = Yw.

Proof: If w = si, ∆si = Aiδi = yi − Bi. Therefore Φ(∆si) = hi − Bi = hi + t1+t2
E(αi)

= Ysi . If

siw > w, by induction hypothesis we can assume Φ(∆w) = Yw =
∑
u≤w

p(u,w)hu. As Φ is a Qt1,t2(Λ)-

isomorphism, it follows that ∆w =
∑
u≤w

p(u,w)yu. Then ∆siw = ∆si∆w = Aiδi
∑
u≤w

p(u,w)yu =
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u≤w

si[p(u,w)]Aiδiyu =
∑
u≤w

si[p(u,w)](yi − Bi)yu =
∑
u≤siw

p(u, siw)yu. We used the recurrence

relation (Proposition 5) for the last equality. Therefore Φ(∆siw) =
∑
u≤siw

p(u, siw)hu = Ysiw. The

theorem is proved. 2

Corollary 2 (Explicit formula for p̃(w, v))
Let v = si1 · · · si` be a reduced expression. Then we have

p̃(w, v) =
1

A(w)

∑
ε=(ε1,··· ,ε`)∈{0,1}`,s

ε1
i1
···sε`i`=w

∏̀
j=1

Cj(ε)

where for ε = (ε1, · · · , ε`) ∈ {0, 1}`, Cj(ε) := sε1i1 s
ε2
i2
· · · sεj−1

ij−1
(δεj ,1Aij + δεj ,0Bij ).

Proof: Taking the inverse image of the map Φ, the equality hv =
∑
w≤v p̃(w, v)Yw becomes

yv =
∑
w≤v

p̃(w, v)∆w =
∑
w≤v

p̃(w, v)A(w)δw.

As v = si1 · · · si` is a reduced expression, yv = ysi1 · · · ysi` = (Aiiδi1 +Bi1δe) · · · (Ai`δi` +Bi`δe).
By expanding this we get the formula.

2

Remark 4 Using Theorem 1, we also have a closed form for p(w, v). We have another conjectural
formula for p(w, v) using λ-chain cf. [Nar].

Example 1 Type A2. We use notation A−1 = ?(A1), B−1 = ?(B1), B12 = t1+t2
1−e−(α1+α2) .

When v = s1s2s1, w = s1, then ε = (1, 0, 0), (0, 0, 1) and

p̃(s1, s1s2s1) = (A1B12B−1 +B1B2A1)/A1 = B12B−1 +B1B2 = B2B12.

When v = s1s2s1, w = s2, then ε = (0, 1, 0) and

p̃(s2, s1s2s1) = (B1A2B12)/A2 = B1B12.

When v = s1s2s1, w = e, then ε = (0, 0, 0), (1, 0, 1) and

p̃(e, s1s2s1) = B1B2B1 +A1B12A−1.

4 Casselman’s problem
In his paper [Cas] B. Casselman gave a problem concerning transition coefficients between two bases in
the space of Iwahori fixed vectors of a principal series representation of a p-adic group. We relate the
problem with the Yang-Baxter basis and give an answer to the problem.
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4.1 Principal series representations of p-adic group and Iwahori fixed vector
We follow the notations of M.Reeder [Re1, Re2]. Let G be a connected reductive p-adic group over a
non-archimedian local field F . For simplicity we restrict to the case of split semisimple G. Associated
to F , there is the ring of integer O, the prime ideal p with a generator $, and the residue field with
q = |O/p| elements. Let P be a minimal parabolic subgroup (Borel) of G, and A be the maximal split
torus of P so that A ' (F ∗)r where r is the rank of G. For an unramified quasi-character τ of A, i.e. a
group homomorphism τ : A → C∗ which is trivial on A0 = A ∩ K, where K = G(O) is a maximal
compact subgtoup of G. Let T = C∗ ⊗ X∗(A) be the complex torus dual to A, where X∗(A) is the
group of rational characters on A, i.e. X∗(A) = {λ : A → F ∗, algebraic group homomorphism}. We
have a pairing <,>: A/A0 × T → C∗ given by < a, z ⊗ λ >= zval(λ(a)). This gives an identification
T ' Xnr(A) of T with the set of unramified quasi-characters on A (cf. [Bum] Exercise 18,19).

Let ∆ ⊂ X∗(A) be the set of roots of A in G, ∆+ be the set of positive roots corresponding to P and
Σ ⊂ ∆+ be the set of simple roots . For a root α ∈ ∆, we define eα ∈ X∗(T ) by

eα(τ) =< hα($), τ >

for τ ∈ T where hα : F ∗ → A is the one parameter subgroup (coroot) corresponding to α.

Remark 5 As the definition shows, eα is defined using the coroot α∗ = hα. So it should be parametrized
by α∗, but for convenience we follow the notation of [Re1]. Later we will identify eα(α ∈ ∆ = R∗) with
eα(α ∈ R = ∆∗) by the map ∗ : ∆→ R of root data.

W acts on right of Xnr(A) so that τw(a) = τ(waw−1) for a ∈ A, τ ∈ T and w ∈ W . The action of
W on X∗(T ) is given by (weα)(τ) = ewα(τ) = eα(τw) for α ∈ ∆, τ ∈ T and w ∈W .

The principal series representation I(τ) of G associated to an unramified quasicharacter τ of A is
defined as follows. As a vector space over C it consists of locally constant functions on G with values
in C which satisfy the left relative invariance properties with respect to P where τ is extended to P with
trivial value on the unipotent radical N of P = AN .

I(τ) := IndGP (τ) = {f : G→ C loc. const. function |f(pg) = τδ1/2(p)f(g) for ∀p ∈ P,∀g ∈ G}.

Here δ is the modulus of P . The action of G on I(τ) is defined by right translation, i.e. for g ∈ G and
f ∈ I(τ), (π(g)f)(x) = f(xg).

Let B be the Iwahori subgroup which is the inverse image π−1(P (Fq)) of the Borel subgroup P (Fq)
of G(Fq) by the projection π : G(O) → G(Fq). Then we define I(τ)B to be the space of Iwahori fixed
vectors in I(τ), i.e.

I(τ)B := {f ∈ I(τ) | f(gb) = f(g) for ∀b ∈ B, ∀g ∈ G}.

This space has a natural basis {ϕτw}w∈W . ϕτw ∈ I(τ)B is supported on PwB and satisfies

ϕτw(pwb) = τδ1/2(p) for ∀p ∈ P,∀b ∈ B.

4.2 Intertwiner and Casselman’s basis
From now on we always assume that τ is regular i.e. the stabilizer Wτ = {w ∈ W | τw = τ} is trivial.
The intertwining operator Aτw : I(τ)→ I(τw) is defined by

Aτw(f)(g) :=

∫
Nw

f(wng)dn
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where Nw := N ∩ w−1N−w, with N− being the unipotent radical of opposite parabolic P− which
corresponds to the negative roots ∆−. The integral is convergent when |eα(τ)| < 1 for all α ∈ ∆+ such
that wα ∈ ∆− (cf. [Bum] Proposition 63), and may be meromorphically continued to all τ . It has the
property that for x, y ∈W with `(xy) = `(x) + `(y), then

Aτ
x

y Aτx = Aτxy.

The Casselman’s basis {fτw}w∈W of I(τ)B is defined as follows. fτw ∈ I(τ)B and

Aτyfτw(1) =

{
1 if y = w

0 if y 6= w.

M.Reeder characterizes this using the action of affine Hecke algebra (cf. [Re2] Section 2). The affine
Hecke algebraH = H(G,B) is the convolution algebra of B bi-invariant locally constant functions on G
with values in C. By the theorem of Iwahori-Matsumoto it can be described by generators and relations.
The basis {Tw}w∈W̃aff

consists of characteristic functions Tw := chBwB of double cosetBwB. LetHW
be the Hecke algebra of the finite Weyl group W generated by the simple reflections sα for simple roots
α ∈ Σ. As a vector spaceH is the tensor product of two subalgebrasH = Θ⊗HW . The subalgebra Θ is
commutative and isomorphic to the coordinate ring of the complex torus T with a basis {θa | a ∈ A/A0},
where θa is defined as follows (cf. [Lu2]). Define A− := {a ∈ A | |α(a)|F ≤ 1 ∀α ∈ Σ}. For a ∈ A,
choose a1, a2 ∈ A− such that a = a1a

−1
2 . Then θa = q(`(a1)−`(a2))/2Ta1T

−1
a2 where for x ∈ G, `(x) is

the length function defined by q`(x) = [BxB : B] and Tx ∈ H is the characteristic function of BxB.
By Lemma (4.1) of [Re1], there exists a unique fτw ∈ I(τ)w ∩ I(τ)B for each w ∈W such that
(1)fτw(w) = 1 and
(2)π(θa)fτw = τw(a)fτw for all a ∈ A.

Here I(τ)w := {f ∈ I(τ) | support of f is contained in
⋃
x≥w PxP}.

4.3 Transition coefficients
Let

fτw =
∑
w≤v

aw,v(τ)ϕτv

and
ϕτw =

∑
w≤v

bw,v(τ)fτv .

The Casselman’s problem is to find an explicit formula for aw,v(τ) and bw,v(τ).
To relate the results in Sections 2 and 3 with the Casselman’s problem, in this subsection we specialize

the parameters t1 = −q−1, t2 = 1 and take tensor product with the complex field C. For example, the
Yang-Baxter basis Yw will become aQt1,t2(Λ)⊗C basis inHQ(Λ)

t1,t2 (W )C = H
Q(Λ)
t1,t2 (W )⊗C. The generic

Demazure-Lusztig operator defined in Section 3 will become

yi := Aiδi +Bi where Ai :=
−q−1 + e−αi

1− eαi
, Bi :=

−q−1 + 1

1− e−αi
.

Then (yi + q−1)(yi − 1) = 0.
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Theorem 3 We identify eα with eα (cf. Remark 5). Then,

aw,v(τ) = p̃(w, v)(τ)|t1=−q−1,t2=1

bw,v(τ) = p(w, v)(τ)|t1=−q−1,t2=1.

Proof: bw,v’s satisfy the same recurrence relation (Proposition 5 with t1 = −q−1, t2 = 1) as p(w, v)’s
(cf. [Re2] Proposition (2.2)). The initial condition bw,w = p(w,w) = 1 leads to the second equation. The
first equation then also holds. Note that the by,w in [Re2] is our bw,y .

2

Remark 6 There is also a direct proof that does not use recurrence relation cf. [NN].

Corollary 3 We have a closed formula for aw,v(τ) and bw,v(τ) by Corollary 2 and Theorem1.

Corollary 4 For v ∈W , we have

∑
w≤v

bw,v =
∏

β∈R(v)

1− q−1eβ

1− eβ
,

and ∑
w≤v

bw,v(−q−1)`(w) =
∏

β∈R(v)

1− q−1

1− eβ
.

Proof: When t1 = −q−1, t2 = 1, we can specialize hi to 1 and we get the first equation from the definition
of Yv , since 1+ (1−q−1)eβ

1−eβ = 1−q−1eβ

1−eβ . We can also specialize hi to−q−1 and−q−1+ (1−q−1)eβ

1−eβ = 1−q−1

1−eβ
gives the second equation. 2

Remark 7 The left hand side of the first equation in Corollary 4 is m(e, v−1) in [BN]. So this gives
another proof of Theorem 1.4 in [BN].

4.4 Whittaker function
M.Reeder [Re2] specified a formula for the Whittaker functionWτ (fτw) and using bw,v , he got a formula
forWτ (ϕτw). For a ∈ A, let λa ∈ X∗(T ) be

λa(z ⊗ µ) = zval(µ(a)) for z ∈ C∗, µ ∈ X∗(A).

Formally the result of M.Reeder [Re2] Corollary (3.2) is written as follows. For w ∈W and a ∈ A−,

W(ϕw)(a) = δ1/2(a)
∑
w≤y

bw,y y

λa ∏
β∈R+−R(y)

1− q−1eβ

1− e−β

 ∈ C[T ].

Then using Corollary 3, we have an explicit formula ofW(ϕw)(a).



Yang-Baxter basis and Casselman’s Problem 945

4.5 Relation with Bump-Nakasuji’s work
Now we explain the relation between this paper and Bump-Nakasuji [BN]. First of all, the notational
conventions are slightly different. Especially in the published [BN] the natural base and intertwiner are
differently parametrized. The natural basis φw in [BN] is our ϕw−1 . The intertwiner Mw in [BN] is our
Aw−1 so that if `(w1w2) = `(w1) + `(w2), Mw1w2 = Mw1 ◦Mw2 while Aw1w2 = Aw2Aw1 .

In the paper [BN], another basis {ψw}w∈W for the space I(τ)B was defined and comparerd with the
Casselman’s basis. They defined ψw :=

∑
v≥w ϕv and expand this as ψw =

∑
v≥wm(w, v)fv and

conversely fw =
∑
v≥w m̃(w, v)ψv . They observed that the transition coefficients m(w, v) and m̃(w, v)

factor under certain condition. Let S(w, v) := {α ∈ R+|w ≤ sαv < v} and S′(w, v) := {α ∈ R+|w <
sαw ≤ v}. Then the statements of the conjectures are as follows.

Conjecture 1 ([BN] Conjecture 1.2) Assume that the root system R is simply-laced. Suppose w ≤ v and
|S(w, v)| = `(v)− `(w), then

m(w, v) =
∏

α∈S(w,v)

1− q−1zα

1− zα
.

Conjecture 2 ([BN] Conjecture 1.3) Assume that the root system R is simply-laced. Suppose w ≤ v and
|S′(w, v)| = `(v)− `(w), then

m̃(w, v) = (−1)`(v)−`(w)
∏

α∈S′(w,v)

1− q−1zα

1− zα
.

Proposition 10 Conjecture 1.2 and Conjecture 1.3 in [BN] are equivalent.

Proof: We can show m(w, v) =
∑
w≤z≤v p(z, v) and m̃(w, v) =

∑
w≤z≤v(−1)`(v)−`(z)p̃(w, z). Then

it follows by the Theorem 1 that m̃(w, v) = (−1)`(v)−`(w)m(vw0, ww0). As S′(w, v) = S(vw0, ww0)
we get the desiered conclusion. 2
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