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A triple product formula for plane partitions
derived from biorthogonal polynomials

Shuhei Kamioka1†

1Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan

Abstract. A new triple product formulae for plane partitions with bounded size of parts is derived from a combinato-
rial interpretation of biorthogonal polynomials in terms of lattice paths. Biorthogonal polynomials which generalize
the little q-Laguerre polynomials are introduced to derive a new triple product formula which recovers the classical
generating function in a triple product by MacMahon and generalizes the trace-type generating functions in double
products by Stanley and Gansner.

Résumé. Une nouvelle formule pour des partitions planes donnée dans un produit triple est obtenue d’une in-
terprétation combinatoire des polynômes biorthogonaux en termes de chemins sur le réseau carré. Des polynômes
biorthogonaux qui généralisent les petits q-polynômes de Laguerre sont introduits pour obtenir une nouvelle formule
qui généralise la fonction génératrice dans un triple produit établie par McMahon et les fonctions génératrice de traces
dans des produits doubles établies par Stanley et Gansner.

Keywords. plane partitions, biorthogonal polynomials, orthogonal polynomials, lattice paths

1 Introduction
A plane partition π of a nonnegative integer N is a two-dimensional array π = (πi,j)i,j=1,2,3,... of
nonnegative integers such that

∑∞
i,j=1 πi,j = N and πi,j ≥ max{πi+1,j , πi,j+1} for every (i, j) ∈ Z2

≥1.
(Throughout the paper we write Z≥k for the set of integers at least k.) A plane partition π distributes N
among its parts πi,j so that each row and each column are non-increasing, and gives a two-dimensional
analogue of an (integer) partition. MacMahon studied plane partitions in depth and found the following
generating function in a triple product [9, Section IX]

∑
π∈P(r,c,n)

q|π| =

r−1∏
i=0

c−1∏
j=0

n−1∏
k=0

1− qi+j+k+2

1− qi+j+k+1
(1)

with |π| =
∑∞
i,j=1 πi,j where P(r, c, n) denotes the set of plane partitions of at most r rows and at most c

columns whose parts are bounded above by n. Namely π ∈ P(r, c, n) if and only if πr+i,j = πi,c+j = 0
for every (i, j) ∈ Z≥1 and π1,1 ≤ n.
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Let P(r, c) = ∪∞n=0P(r, c, n), the set of plane partitions of at most r rows and at most c columns.
MacMahon also showed the following generating function in a double product∑

π∈P(r,c)

q|π| =

r−1∏
i=0

c−1∏
j=0

(1− qi+j+1)−1 (2)

that is obtained from (1) by n → ∞. Stanley introduced the trace tr(π) =
∑∞
i=1 πi,i of plane partitions

and generalized (2) as [11, 12] ∑
π∈P(r,c)

q|π|atr(π) =

r−1∏
i=0

c−1∏
j=0

(1− aqi+j+1)−1. (3)

Gansner later refined (3) as [3, 4]

∑
π∈P(r,c)

∏
`∈Z

q
tr`(π)
` =

r−1∏
i=0

c−1∏
j=0

(
1−

j∏
`=−i

q`

)−1
(4)

with the `-traces tr`(π) =
∑
j−i=` πi,j for ` ∈ Z. (Gansner obtained more general results for (reverse)

plane partitions of arbitrary shape.)
Gansner’s generating function (4) in a double product recovers Stanley’s (3) by q` = q for all ` ∈ Z

except for q0 = aq, that further recovers MacMahon’s (2) by a = 1. We so have a series of double product
formulae (2), (3) and (4) for the set P(r, c) of plane partitions with unbounded size of parts. Is there an
analogous series of triple product formulae for the set P(r, c, n) of plane partitions with bounded size
of parts? We find in this paper such a series of triple product formulae, which involves MacMahon’s
generating function (1) and generalizations of the trace-type generating functions (3) and (4), with the
help of biorthogonal polynomials.

This paper is organized as follows. In Section 2 we explain basics of biorthogonal polynomials and
show a combinatorial interpretation of (general) biorthogonal polynomials in terms of lattice paths. A
determinant of moments for biorthogonal polynomials will admit a combinatorial expression by non-
intersecting lattice paths of Gessel–Viennot [5] type. In Section 3 we introduce specific biorthogonal
polynomials, which we call the generalized little q-Laguerre polynomials, and examine lattice path com-
binatorics of the generalized little q-Laguerre polynomials based on the general results developed in Sec-
tion 2. The results in Section 3 are used in Section 4 to derive a triple product formula for plane partitions
which generalizes Gansner’s generating function (4) (Theorem 9). The triple product formula will reduce
to another triple product formula, which will generalize Stanley’s generating function (3), and recover
MacMahon’s generating function (1) by specialization of parameters.

2 Lattice path combinatorics of biorthogonal polynomials
Let K be a field. Let F : K[x±1, y±1] → K be a linear functional defined on the space of Laurent
polynomials in x and y over K. The linearity of F means that F [aP (x, y) + bQ(x, y)] = aF [P (x, y)] +
bF [Q(x, y)] for any constants a and b and any Laurent polynomials P (x, y) and Q(x, y). The linear
functional F is thus uniquely determined by the moments

fi,j = F [xiyj ], (i, j) ∈ Z2. (5)
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We define determinants of moments

∆(r,c)
n = det

0≤i,j<n
(fr+i,c+j), (r, c) ∈ Z2, n ∈ Z≥0, (6)

where ∆
(r,c)
0 = 1. We assume throughout the paper that the determinant ∆

(r,c)
n does not vanish.

Let (r, c) ∈ Z2 and n ∈ Z≥0. We define a (monic) biorthogonal polynomial P (r,c)
n (x) ∈ K[x] with the

leading term xn by the orthogonality

F [xryc+jP (r,c)
n (x)] = h(r,c)n δj,n, 0 ≤ j ≤ n, (7)

where h(r,c)n is some nonvanishing constant, called the normalization constant, and δj,n the Kronecker
delta. The biorthogonal polynomial uniquely exists for F . (Write down (7) in a linear system of the
coefficients of P (r,c)

n (x) and solve it.) The monicity and the orthogonality (7) induce the determinant
expression of the biorthogonal polynomial

P (r,c)
n (x) =

∣∣∣∣∣∣∣∣∣∣∣∣

fr,c · · · fr,c+j · · · fr,c+n−1 1
...

...
...

...
fr+i,c · · · fr+i,c+j · · · fr+i,c+n−1 xi

...
...

...
...

fr+n,c · · · fr+n,c+j · · · fr+n,c+n−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣
× (∆(r,c)

n )−1 (8)

and hence

h(r,c)n =
∆

(r,c)
n+1

∆
(r,c)
n

. (9)

We remark that the biorthogonal polynomials P (r,c)
n (x) satisfy the biorthogonality relation

F [xrycP (r,c)
m (x)Q(r,c)

n (y)] = h(r,c)n δm,n, m, n ∈ Z, (10)

with polynomials Q(r,c)
n (y) ∈ K[y] given by

Q(r,c)
n (y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fr,c · · · fr,c+j · · · fr,c+n
...

...
...

fr+i,c · · · fr+i,c+j · · · fr+i,c+n
...

...
...

fr+n−1,c · · · fr+n−1,c+j · · · fr+n−1,c+n
1 · · · yj · · · yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (∆(r,c)

n )−1 (11)

which may be different from P
(r,c)
n (x). In the case where x = y the biorthogonal polynomials reduce

to ordinary orthogonal polynomials P (r,c)
n (x) = Q

(r,c)
n (x) which are self-orthogonal. See, e.g., [2] for

details on orthogonal polynomials. The next proposition shows biorthogonal analogues of the Christoffel
and Geronimus transformations for orthogonal polynomials, see, e.g., [13].
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1

2

3

4

5

1 2 3 4 5 6 7

α1,0 α1,1 α1,2 α1,3 α1,4 α1,5 α1,6 α1,7

α2,0 α2,1 α2,2 α2,3 α2,4 α2,5 α2,6 α2,7

α3,0 α3,1 α3,2 α3,3 α3,4 α3,5 α3,6 α3,7

α4,0 α4,1 α4,2 α4,3 α4,4 α4,5 α4,6 α4,7

α5,0 α5,1 α5,2 α5,3 α5,4 α5,5 α5,6 α5,7

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Fig. 1: The square lattice Z2
≥0 with edges labelled. The thick line is a lattice path going from (4, 0) to (0, 6).

Proposition 1 (cf. [10]) The biorthogonal polynomials satisfy the adjacent relations

xP (r+1,c)
n (x) = P

(r,c)
n+1 (x) + a(r,c)n P (r,c)

n (x), (12a)

P (r,c)
n (x) = P (r,c+1)

n (x) + b(r,c)n P
(r,c+1)
n−1 (x) (12b)

for (r, c) ∈ Z2 and n ∈ Z≥0 with b(r,c)0 P
(r,c+1)
−1 (x) = 0 where

a(r,c)n =
h
(r+1,c)
n

h
(r,c)
n

=
∆

(r+1,c)
n+1 ∆

(r,c)
n

∆
(r+1,c)
n ∆

(r,c)
n+1

, b(r,c)n =
h
(r,c)
n

h
(r,c+1)
n−1

=
∆

(r,c)
n+1∆

(r,c+1)
n−1

∆
(r,c)
n ∆

(r,c+1)
n

. (13)

Proof: Expand xP (r+1,c)
n (x) and P (r,c)

n (x) in linear combinations of P (r,c)
k (x), 0 ≤ k ≤ n + 1, and

P
(r,c+1)
` (x), 0 ≤ ` ≤ n, respectively and then equate the coefficients by using the monicity and the

orthogonality (7). 2

In the rest of this section we show a combinatorial interpretation of biorthogonal polynomials in terms
of lattice paths. Let us view a two-dimensional integral lattice in the first quadrant, Z2

≥0, as a square
lattice. We depict the square lattice in matrix-like coordinates where the south and east neighbors of the
lattice point (i, j) ∈ Z2

≥0 are (i + 1, j) and (i, j + 1) respectively. For any lattice points S ∈ Z2
≥0 and

T ∈ Z2
≥0 a lattice path P going from S to T is a path on the square lattice which travels between S and

T with north steps (−1, 0) and east steps (0, 1). Figure 1 shows a lattice path going from (4, 0) to (0, 6).
When S = T we conventionally consider the empty lattice path of no steps at S = T .

Let αi,j , (i−1, j) ∈ Z2
≥0, be arbitrary constants. As shown in Figure 1 we label the edges of the square

lattice by αi,j or 1; the vertical edge between the lattice points (i, j) and (i − 1, j) by αi,j , and every
horizontal edge by 1. The weight w(P ) of a lattice path P is defined to be the product of the labels of all
the edges passed by P . For example, the lattice path in Figure 1 has the weightw(P ) = α4,2α3,4α2,4α1,5.
The weight of any empty lattice path is assume to be 1.
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The next theorem gives the base of the combinatorial interpretation of biorthogonal polynomials.

Theorem 2 Assume that

αi,j = a
(i−j−1,0)
j if i > j; = b

(0,j−i)
i if i ≤ j (14)

where a(i−j−1,0)j and b(0,j−i)i are coefficients of the adjacent relations (12). For each (r, c) ∈ Z2
≥0 then

fr,c
f0,c

=
∑
P

w(P ) (15)

where the sum ranges over all the lattice paths P going from (r, 0) to (0, c).

We can confirm Theorem 2 by the adjacent relations (12). For example, let us consider the case where
(r, c) = (2, 2). We expand the monomial xr = x2 in a linear combination of P (0,c)

k (x) = P
(0,2)
k (x) by

using (12) as follows. By (12a) with (14),

x2 = x2P
(2,0)
0 (x) = xP

(1,0)
1 (x) + α2,0xP

(1,0)
0 (x) (16a)

= P
(0,0)
2 (x) + (α2,0 + α2,1)P

(0,0)
1 (x) + α2,0α1,0P

(0,0)
0 (x). (16b)

By (12b) with (14),

= P
(0,1)
2 (x) + (α2,0 + α2,1 + α2,2)P

(0,1)
1 (x) + (α2,0α1,1 + α2,1α1,1 + α2,0α1,0)P

(0,1)
0 (x) (16c)

= Q(x) + (α2,0α1,2 + α2,1α1,2 + α2,2α1,2 + α2,0α1,1 + α2,1α1,1 + α2,0α1,0)P
(0,2)
0 (x) (16d)

where Q(x) is a linear combination of P (0,2)
1 (x) and P (0,2)

2 (x). In the last equation the coefficient of
P

(0,2)
0 (x) is equal to the right-hand sum of (15). Thus

x2 = Q(x) + P
(0,2)
0 (x)

∑
P

w(P ). (17)

For this expansion of x2 we multiply yc = y2 to the both sides and apply the linear functional F . From
the orthogonality (7) we then obtain

f2,2 = F [y2Q(x)] + F [y2P
(0,2)
0 (x)]

∑
P

w(P ) = h
(0,2)
0

∑
P

w(P ) (18)

that gives (15) since h(0,2)0 = f0,2. See [6] for the complete proof of Theorem 2.
Theorem 2 provides a combinatorial interpretation of moments of biorthogonal polynomials in terms

of lattice paths. In view of Gessel–Viennot’s method [5], [1, Chapter 31], that naturally leads to a
combinatorial interpretation of determinants of moments in terms of non-intersecting lattice paths. For
(r, c, n) ∈ Z3

≥0 we define LP(r, c, n) to be the set of n-tuples (P0, . . . , Pn−1) of lattice paths such that (i)
Pk goes from (r+k, 0) to (0, c+k); (ii) P0, . . . , Pn−1 are non-intersecting, namely Pj∩Pk = ∅ if j 6= k.
Figure 2 shows an example of such an n-tuple (P0, . . . , Pn−1) ∈ LP(r, c, n) when (r, c, n) = (4, 5, 3).

Corollary 3 For each (r, c, n) ∈ Z3
≥0,

∆
(r,c)
n∏n−1

k=0 f0,c+k
=

∑
(P0,...,Pn−1)∈LP(r,c,n)

n−1∏
k=0

w(Pk). (19)
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P0

P1

P2

Fig. 2: An n-tuple (P0, . . . , Pn−1) ∈ LP(r, c, n) of non-intersecting lattice paths on the square lattice Z2
≥0 where

(r, c, n) = (4, 5, 3).

3 Generalized little q-Laguerre polynomials
In this section we apply the combinatorial interpretation of (general) biorthogonal polynomials in the
previous section to a specific instance of biorthogonal polynomials which we call the generalized little
q-Laguerre polynomials. In what follows we adopt the following notations. For any sequence x`, ` ∈ Z,

[x]nm =

n∏
k=m

xk if m ≤ n; =

m−1∏
k=n+1

x−1k if m > n (20)

where [x]nn+1 = 1.
Let a, p` and q`, ` ∈ Z, be indeterminates. We define the generalized little q-Laguerre polynomial of

degree n by

Ln(x; a; p1, . . . , pn−1; q1, . . . , qn−1) =

n∑
i=0

xi

(
n−1∏
k=i

[p]k1

) ∑
i≥νi≥···≥νn−1≥0

n−1∏
k=i

(
a[q]k−νk1 − 1

[p]νk1

)
.

(21)

The name comes from the (monic) little q-Laguerre polynomial (cf. [7, §14.20])

(−1)nq
n(n−1)

2 (a; q)n × 2φ1

(
q−n, 0

a
; q, xq

)
(22)

that is obtained from (21) with specialized parameters p` = q` = q for all ` ∈ Z. (For the standard
notations for q-analysis, such as (a; q)n and 2φ1, see, e.g., [7, Ch. 1].) Let

L(r,c)
n (x) = Ln(x; a[p]r1[q]c1; pr+1, . . . , pr+n−1; qc+1, . . . , qc+n−1), (r, c) ∈ Z2, n ∈ Z≥0. (23)

Theorem 4 Let K = Q(a, p0, p±1, p±2, . . . , q0, q±1, q±2, . . . ). The generalized little q-Laguerre poly-
nomials satisfy the orthogonality (7) with P (r,c)

n (x) = L(r,c)
n (x) and the normalization constants

h(r,c)n = fr,c+n × an
n−1∏
k=0

[p]r+k1 ([q]c+k1 − [q]c+n1 ) (24)
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where the linear functional F has the moments fi,j = F [xiyj ] given by

fi,j =

i−1∏
k=0

(1− a[p]k1 [q]j1) if i ≥ 0; =

−1∏
k=i

(1− a[p]k1 [q]j1)−1 if i < 0 (25)

where f0,j = 1.

We can prove the orthogonality by means of a generalization of the q-Chu–Vandermonde identity for
2φ1, see [6] for details. Proposition 1 and Theorem 4 immediately yield the following.

Corollary 5 The generalized little q-Laguerre polynomials satisfy the adjacent relations (12) withP (r,c)
n (x) =

L(r,c)
n (x) and the coefficients

a(r,c)n = [p]r+nr+1 (1− a[p]r1[q]c+n1 ), b(r,c)n = a[p]r+n−11 [q]c1(1− [q]c+nc+1 ). (26)

The general results in Section 2 gives us the following combinatorial interpretation of the the general-
ized little q-Laguerre polynomials. See [6] for the proofs of Lemma 6 and Theorems 7 and 8 mentioned
below.

Let P be a lattice path going from (r, 0) to (0, c). We can see the region bordered by P and the two axes
as a Young diagram of an (integer) partition for which we write λ(P ) = (λi(P ))i=1,2,... where λi(P )
denotes the i-th part of the partition λ(P ). For example, the lattice path in Figure 1 has λ(P ) = (5, 4, 4, 2).
For any Young diagram λ we define D`(λ), ` ∈ Z, to be the number of boxes on the `-th diagonal of λ
where a box at (i, j) is on the `-th diagonal if and only if j − i = `. For example, (D`(λ))−3≤`≤5 =
(1, 2, 2, 3, 3, 2, 1, 1, 0) for λ = (5, 4, 4, 2).

The labels

αi,j = [p]i−1i−j (1− a[p]i−j−11 [q]j1) if i > j; = a[p]i−11 [q]j−i1 (1− [q]jj−i+1) if i ≤ j (27)

from the coefficients (26) of adjacent relations give rise to the following weight.

Lemma 6 Assume (27). Let P be a lattice path going from (r, 0) to (0, c). Then

w(P ) = aD0(λ(P ))

(
r−1∏
i=1

p
D−i(λ(P ))
i

)c−1∏
j=1

q
Dj(λ(P ))
j

ω′r(P ) with (28a)

ω′r(P ) =

{
d∏
i=1

(1− [q]
λi(P )
λi(P )−i+1)

}{
r∏

i=d+1

(1− a[p]
i−λi(P )−1
1 [q]

λi(P )
1 )

}
(28b)

where d = D0(λ(P )) in (28b).

Theorem 2 when applied to the generalized little q-Laguerre polynomials implies the following.

Theorem 7 For each (r, c) ∈ Z2
≥0 the moment fr,c given by (25) admits the combinatorial expression

fr,c =
∑
P

aD0(λ(P ))

(
r−1∏
i=1

p
D−i(λ(P ))
i

)c−1∏
j=1

q
Dj(λ(P ))
j

ω′r(P ) (29)

where the sum ranges over all the lattice paths going from (r, 0) to (0, c).
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Fig. 3: The 3D Young diagram of the plane partition (31).

The analogue of Corollary 3 for the generalized little q-Laguerre polynomials is the following.

Theorem 8 For each (r, c, n) ∈ Z3
≥0 the determinant ∆

(r,c)
n = det0≤i,j<n(fr+i,c+j) of the moments fi,j

given by (25) satisfies

∆(r,c)
n

{n−1∏
k=0

(pr+kqc+k)
(n−k)(n−k−1)

2

} ∏
1≤i≤k<n

(1− [q]c+kc+k−i+1)


−1

=
∑

(P0,...,Pn−1)∈LP(r,c,n)

a
∑n−1

k=0 D0(λ(Pk))

(
r−1∏
i=1

p
∑n−1

k=0 D−i(λ(Pk))
i

)c−1∏
j=1

q
∑n−1

k=0 Dj(λ(Pk))
j


× ω′r,n(P0, . . . , Pn−1) (30a)

with

ω′r,n(P0, . . . , Pn−1) =

n−1∏
k=0

{
dk∏

i=k+1

(1− [q]
λi(Pk)
λi(Pk)−i+1

}{
r+k∏

i=dk+1

(1− a[p]
i−λi(Pk)−1
1 [q]

λi(Pk)
1 )

}
(30b)

where dk = D0(λ(Pk)).

4 Triple product formulae for plane partitions
It is customary to depict a plane partition π = (πi,j)i,j=1,2,3,... in a three-dimensional (3D) Young diagram
in which πi,j (unit) cubes are stacked over the positions (i, j) ∈ Z2

≥1. For example, the plane partition
3 3 3 2 2
3 3 3 1 1
3 3 2 1 0
3 2 0 0 0

 (31)

is depicted as the 3D Young diagram shown in Figure 3. For each k ∈ Z≥1 we define a partition λk(π)
so that the Young diagram of λk(π) is equal to the cross-section at level k of the 3D Young diagram of π.
For example, the plane partition (31), or the 3D Young diagram in Figure 3, gives rise to the partitions

λ1(π) = (5, 5, 4, 2), λ2(π) = (5, 3, 3, 2), λ3(π) = (3, 3, 2, 1) (32)
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λ1(π) = λ2(π) = λ3(π) =

Fig. 4: The cross-sections λk(π) at level k = 1, 2, 3 of the 3D Young diagram π in Figure 3.

and λk(π) = ∅ = (0, 0, 0, . . . ) for k ≥ 4, see Figure 4. We will write λk,i(π) for the i-th part of the
partition λk(π).

There exists a classical bijection between P(r, c, n) and LP(r, c, n) which connects plane partitions
with non-intersecting lattice paths. For completeness we here describe the bijection. From a plane parti-
tion π ∈ P(r, c, n) an n-tuple (P0, . . . , Pn−1) ∈ LP(r, c, n) of non-intersecting lattice paths correspond-
ing to π is constructed as follows.

(i) On the square lattice Z2
≥0 draw lattice paths P ′0, . . . , P

′
n−1 going from (r, 0) to (0, c) so that λ(P ′k) =

λn−k(π).

(ii) For each 0 ≤ k < n translate the lattice path P ′k by (k, k) (so that P ′k goes from (r + k, k) to
(k, c+ k)). We write P ′′k for the obtained lattice path.

(iii) For each 0 ≤ k < n add k consecutive east and north steps to the initial and terminal points of P ′′k
respectively (so that P ′′k goes from (r + k, 0) to (0, c+ k)). The obtained lattice path is Pk.

See Figure 5 that demonstrates the construction.
The constructive bijection can be formulated by

λ(Pk) = (c, . . . , c︸ ︷︷ ︸
k times

, λn−k,1(π), . . . , λn−k,r(π)) + (kr+k), 0 ≤ k < n. (33)

We hence have

D`(λ(Pk)) = D`(λn−k(π)) + k,

n−1∑
k=0

D`(λ(Pk)) = tr`(π) +
n(n− 1)

2
, (34a)

λi(Pk) = λn−k,i−k(π) + k, ` ∈ Z, 0 ≤ k < n, i > k. (34b)

By means of the bijection, that admits (34), we can translate Theorem 8 for non-intersecting lattice paths
into the following theorem for plane partitions, that is the main theorem of this paper.
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Fig. 5: The bijection between P(r, c, n) and LP(r, c, n) with (r, c, n) = (4, 5, 3).

Theorem 9 Let (r, c, n) ∈ Z3
≥0. Then

∑
π∈P(r,c,n)

atr0(π)

(
r−1∏
i=1

p
tr−i(π)
i

)c−1∏
j=1

q
trj(π)
j

ωr,n(π) =

r−1∏
i=0

c−1∏
j=0

n−1∏
k=0

1− a[p]i1[q]j+k+1
1

1− a[p]i1[q]j+k1

(35a)

with

ωr,n(π) =

π1,1∏
k=1

{
dk∏
i=1

(1− [q]
λk,i(π)+n−k
λk,i(π)−i+1 )

}{
r∏

i=dk+1

(1− a[p]
i−λk,i(π)−1
1 [q]

n−k+λk,i(π)
1 )

}

×

{
r∏
i=1

(1− a[p]i−11 [q]n−k1 )

}−1
(35b)

where π1,1 denotes the (1, 1)-part of a plane partition π, and dk = D0(λk(π)).

Proof: By use of the bijection between P(r, c, n) and LP(r, c, n) and (34) we can equivalently translate
the formula (30) in Theorem 8 into

∑
π∈P(r,c,n)

atr0(π)

(
r−1∏
i=1

p
tr−i(π)
i

)c−1∏
j=1

q
trj(π)
j

ωr,n(π) =
∆

(r,c)
n

κ
(r,c)
n

{
r−1∏
i=0

n−1∏
k=0

(1− a[p]i1[q]k1)

}−1
(36a)
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where

κ(r,c)n =

a
(
r−1∏
i=1

pi

)c−1∏
j=1

qj


n(n−1)

2 {
n−1∏
k=0

(pr+kqc+k)
(n−k)(n−k−1)

2

}

×

 ∏
1≤i≤k<n

(1− [q]c+kc+k−i+1)

 . (36b)

The proof thus amounts to the evaluation of the determinant ∆
(r,c)
n of moments for the generalized little

q-Laguerre polynomials discussed in Section 3. One possible way to evaluate the determinant is to utilize
one of the product formulae for determinants by Krattenthaler [8]. We here show an alternative way based
on biorthogonal polynomials. From (9) we have

∆(r,c)
n =

n−1∏
k=0

h
(r,c)
k (37)

for (general) biorthogonal polynomials. Substituting the normalization constants (24) for the generalized
little q-Laguerre polynomials we readily know

∆(r,c)
n = κ(r,c)n

r−1∏
i=0

n−1∏
k=0

(1− a[p]i1[q]c+k1 ). (38)

Substituting (38) for (36a) we soon get the triple product formula (35a). 2

The triple product formula (35) for plane partitions reduces to

∑
π∈P(r,c,n)

q|π|atr(π)ωn(π) =

r−1∏
i=0

c−1∏
j=0

n−1∏
k=0

1− aqi+j+k+2

1− aqi+j+k+1
with (39a)

ωn(π) =

π1,1∏
k=1

(qn−k+1; q)D0(λk(π))

(aqn−k+1; q)D0(λk(π))
(39b)

with the specialized parameters a ← aq and p` = q` = q for all `. Furthermore (39) reduces to MacMa-
hon’s triple product formulae (1) with a = 1 since ωn(π)|a=1 = 1. We have thus obtained a series of the
triple product formulae (1), (39) and (35) for the set P(r, c, n) of plane partitions with bounded size of
parts.

This series of triple product formulae is totally analogous to the series of the generating functions (2),
(3) and (4) in double products for the set P(r, c) of plane partitions with unbounded size of parts. Indeed
the flow of reductions from (35) via (39) to (1) for triple product formulae is performed by the same
specializations of parameters as the flow of reductions from (4) via (3) to (2) for double product ones,
where q0 = a and q−` = p` for all ` ∈ Z≥1 in (4). Moreover, as MacMahon’s generating function (1)
in a triple product recovers his generating function (2) in a double product by n → ∞, the triple product
formulae (35) and (39) respectively recover Gansner’s and Stanley’s generating functions (4) and (3) in



682 Shuhei Kamioka

double products by n → ∞. In fact ωr,n(π) in (35) and ωn(π) in (39) both tends to 1, as formal power
series in q1, q2, . . . and in q respectively, as n → ∞. The series of the triple product formulae (1), (39)
and (35) therefore generalizes the series of the generating functions (2), (3) and (4) in double products by
an additional parameter n for the upper bound of parts.
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