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On q-integrals over order polytopes (extended
abstract)

Jang Soo Kim'f and Dennis Stanton %

L Department of Mathematics, Sungkyunkwan University, Suwon, South Korea
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Abstract. A g-integral over an order polytope coming from a poset is interpreted as a generating function of linear
extensions of the poset. As an application, the g-beta integral and a g-analog of Dirichlet’s integral are computed. A
combinatorial interpretation of a g-Selberg integral is also obtained.

Résumé. Une g-intégrale sur un polytope provenant d’un poset est interprété comme une série génératrice d’extensions
linéaires de la poset. En application, I’intégrale g-béta et un g-analogue de I'intégrale de Dirichlet sont calculés. Une
interprétation combinatoire de une intégrale g-Selberg est également obtenue.

Keywords. g-integral, order polytope, g-Selberg integral

1 Introduction

In this extended abstract we give a combinatorial interpretation of g-integrals over order polytopes. The
motivation of this extended abstract is to generalize Stanley’s combinatorial interpretation of the Selberg
integral.

The Selberg integral is the following integral first evaluated by Selberg [8]] in 1944:

1 1 n
S = [ [ T2 TT o afrdenoeda, M)
0 0 i=1

1<i<j<n

3

_ ﬁ o+ (G =DNTB+ G = DYCA +5v)

et MNa+B8+(n+j—2))I'(1+7)
where n is a positive integer and «, /3,y are complex numbers such that Re(a)) > 0, Re(3) > 0, and
Re(v) > —min{1/n,Re(a)/(n — 1),Re(S)/(n — 1)}. Stanley [9, Exercise 1.10 (b)] found a combina-
torial interpretation of the above integral when o — 1, 5 — 1 and 2+ are nonnegative integers in terms of
permutations. His idea is to interprete the integral as the probability that a random permutation satisfies
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certain properties. This idea uses the fact that a real number = € (0, 1) can be understood as the probabil-
ity that a random number selected from (0, 1) lies on an interval of length x is equal to 2. Generalizing
this fact to g-integrals is not obvious. We instead consider a different approach by interpreting g-integrals
as generating functions in gq.

Throughout this extended abstract we assume 0 < ¢ < 1. We will use the following notation for
g-series:

1—-4g" ne
[n]q = 1—¢q’ (gt = [gl2g - [nlg,  (@i@)n = (1 —a)(1 —ag)- - (1—ag"™").
We also use the notation [n] := {1,2,...,n}. We denote by &,, the set of permutations on [n].

In order to state our main results, we need several definitions. First, recall that the g-integral of a
function f over (a,b) is

b oo
/ f@)gr = (1— )Y (f(ba)bg' — f(ag')aq')
a i—0

3

Note that the limit as ¢ — 1, the g-integral becomes the usual integral. It is well known that

b prtl _ g1
P S —
/a T T,

For a permutation 7 = m; ... 7, € G,, we will denote the region
{(z1,...,zn) a<zg < o<z <b}

bya <z, <.-- <z, <b. The g-integral over this region is defined as follows.

Definition 1.1. For a permutation 7 = 71 ... 7T, € &,, we define

trn 11
/ f(zl,...,:cn)dqml~~dqxn2/ / fx1,. .., xn)dgx - - - dgn,
a<Tn; < <Tr,, <b Sn s1

where
si = 8i(Tig1,...,xn) =max ({z;: j > i,m; <m}U{a}),

t; = ti($i+1,...,$”) = min({xj 1y > i,ﬂ'j > 7Ti} U{b})

For example,

/ f(@1,. . @6)dgx1 - dyxe
a<z3z<zi<z5<w2<w1<76<b
b Tg Te x5 T4 Ts5
= / / / / / / f(xl,...,arﬁ)dqxl "'dqaf@.
a a x5 a s xrs3
Note that since s; and ¢; are constants when x;41,...,x, and ¢ are fixed, the above definition makes

sense as a g-integral.
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Let P be a poset on a set {z1, 3, ..., T, }. By abuse of notation, we will consider x; as an element of
P and also as a variable. For ¢ € [n], we denote by P; the subposet of P consisting of ;, i1, ..., Zn.
Let O%(P) be the polytope

OYP) = {(x1,...,2,) € [a,0]" : x; < wjif w; <p a;}.

We will also use O(P) in place of OF(P).
We define the g-integral over this polytope as follows.

Definition 1.2. The g-integral of f(zy,...,z,) over the polytope O (P) is defined by

tn tn—1 t1
/(gb(P)f(x17...7$n)dq1‘1-.-dqwn:/ / / f(x17._.7xn)dqxl...dqxn,
a Sn S S1

n—1

where
8i = 8i(@ig1, ..., xn) = max {a} U{zy : o <p, 2;}), )

ti = ti(Tiv1, ..., xp) = min ({0} U {zy 1 25 <p, 21}) - 3)

By definition we have

lim f(xl,...,xn)dqx1~--dqxnz/ flay, ... xy)dey - day,.
—=1Job(P) 0L (P)

Note that if P is the chain 7., < @r, < -+ < z., for a permutation 7 € &,, then O%(P) is the
simplex {(z1,...,2p) 1@ <@g, <--- <z <b}and

/ f(xl,...,xn)dqx1~-~dqxn:/ flz1, .. zn)dgzy - - dgn.
oL (P) a<zr < <zr, <b

The remainder of this extended abstract is organised as follows. In Section [2] we will find a formula
for the g-integral over a simplex. In Section |3| we show that the g-volume of the order polytope O(P)
can be written as a generating function for linear extensions of the poset P. In Section 4| we find a
relation between g-integrals over order polytopes O(P) and O(Q) for two posets P and @ such that Q
is obtained from P by adding a chain. In Section [5] we show that the g-beta integral and a g-analog of
Dirichlet’s integral can be computed using our methods. We also discuss a connection with the general
g-beta integral of Andrews and Askey [2]. In Section [ we express a g-Selberg integral in terms of the
g-volume of certain order polytope and find a combinatorial interpretation for it.

2 g-integrals over simplices

In this section we compute g-integrals of a multivariate function over the simplex {(z1,...,2,) : @ <
Ty <o <y, < b

Letm = mmy...m, € &,. Aninteger i € [n — 1] is called a descent of 7 if w; > ;1. Let Des(r) be
the set of descents of 7. We define des(7) and maj(7) to be the number of descents of 7 and the sum of
descents of m, respectively.
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Lemma 2.1. Form € S, andr,s € {0,1,2,...} U {oo}, we have

/ f(@ryy ooy Ty ) - - - dgn,
qrﬁxﬂ'l S"'wan <q*

=(1-q" > Fla™, .o g )T,

>4 2> >0 >
ij>ij11 If j€Des()

The following theorem gives a formula for the volume of the simplex.

Theorem 2.2. For m € &,, and real numbers a < b, we have

pr maj(m) _
/ dgzy -+ dgzy, = %(aq des(”)/b; Q-
<y <Ky, <b nlg!

When a = 0 and b = 1 in Theorem [2.2] we obtain the following corollary.
Corollary 2.3. Form € &,

qmaj ()

/ dgzy - dgxy = —
0< ey <Ly, <1 [n]q!

3 ¢-integrals over order polytopes

In this section we consider g-integrals over order polytopes. We need some of the P-partition theory in
[9} Chapter 3].

Let 7 € &,. A function f : [n] — N is called w-compatible if f(m) > f(m) > -+ > f(my,) and
f(mi) > f(miy1) for all i € Des(n). Then for any function f : [n] — N, there is a unique 7 € &,, for
which f is m-compatible.

Let P be a poset with n elements. A labeling of P is a bijection w : P — [n]. A (P,w)-partition is a
function ¢ : P — N such that

e o(x) >o(y)ifx <py,
o o(z)>o(y)ifz <pyandw(z) > w(y).

A linear extension of P is an arrangement (¢1,%2,...,t,) of the elements in P such that if ¢; <p t;
then ¢ < j. The Jordan-Hélder set L(P,w) is the set of permutations of the form w(t;)w(t2) - - w(ty)
for some linear extension (¢1, to, ..., t,) of P.

Let A(P,w) denote the set of (P, w)-partitions. For a permutation 7 € &,,, we denote by S, (P, w) the
set of functions o : P — N such that o o w™! is 7-compatible. Notice that in the definition of S, (P,w)
we only need the underlying set of P. Thus we can consider S, (P, w) when P is a set with n elements
andw : P — [n] is a bijection. We will use the following facts [9, Lemma 3.15.3, Theorem 3.15.7]:

APw) = |J Sx(Pw), )

TeL(P,w)
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. Ly g
S gl = = : )

c€A(P,w) (q7 q)n

Lemma [2.1]can be restated as follows.

Proposition 3.1. Let P = {x1,...,x,} with a bijection w : P — [n] defined by w(x;) = i. Then for
integers v > s > 0 and a permutation m € &,,, we have

/ f@1, . an)dgzy - - dgxy, = (1—q)" > F(g@@) L g7 @yglol,
q"Lxry <Ly, <q°

o€Sr(Pw)
r>max(o),min(c)>s

In particular, when r — oo and s = 0, we have

| (e )dgm - dggn = (L= g S f(g7@,... ge)gll,
0Lz, <<, <1

0c€Sx(Pw)

Proposition 3.2. Let P be a poset on {x1, ..., x,} with labeling w : P — [n] given by w(x;) = i for all
i € [n]. Then for real numbers a < b, we have

/Ob(P) f(x1,. . xn)dgxr -+ - dgn = Z / flx1, .., xn)dgxy -+ dgn.

TeL(P,w) aSTry So S, S

Theorem 3.3. Let P be a poset on {x1,...,x,} with labeling w : P — [n] given by w(x;) = i for all
i € [n]. Then, we have

/ f(xla'“,mn)dqxl -d qTn = 1*(] Z f U(wl .“7qg(zn))q\a|. (6)
O(P)

cE€A(P,w)

Moreover, if @ = O(P) N ([q"™, ¢%'] x -+ x [¢"", ¢°"]) for ri, 8; € {0,1,2,...} U {oc}, then
/ f L1y, d Jfl dqxn = (1 _q)an(qU(Il)"qU(In))qloﬂ’ (7)

where the sum is over all o € A(P,w) with s; < o(x;) < r; foreveryi € {1,2,...,n}.
Thus, when f(x1,x2,...,2,) = 1in Theorem we obtain the following corollary.

Corollary 3.4. Let P be a poset on {x1,...,x,} with labeling w : P — [n] given by w(x;) = i for all

i € [n]. Then
1 .
dgxy - dgxy = —— g,
/O(P) ! I [n]y! Z
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4 Changing posets

In this section we consider two posets P and ) where () is obtained from P by adding a chain. The
results in this section will be used for the next two sections.

Lemma 4.1. Let p € Sy,,. Let P be a poset on {x1,...,x,} with xs <p ;. Define Q to be the poset
on{x1,...,Tn,Y1,Y2,---,Ym} with relations x; <q zj ifand only if x; <p xj, and vs <q Yp, <Q
“ ZQ Yo <@ Tt Then, we have

/ qmaj(p)ﬂC;n(q_ des(p)xs/xt; q)mf(xh e vxn)dqxl T dq{ITn
o(P)

= [m]q' o) f(wla e axn)dqyl e dqymdqxl e dqxnv (8)

/ P g7 (g P g J g Q) f (@1, - @) dgry - dgay,
O(P)
= [m]g! o0 fl@1, .. xn)dgxr -+ - dgxsdqyn - - - dgymdgZsy1 - - dgn.  (9)

Moreover, Q) holds if the order of integration is obtained from dgx1 - - - dgxy, by inserting dqyy - - - dgym,
anywhere between x s and x.

Similarly we can prove the following lemma.

Lemma 4.2. Let p € S, and s,t € [m]. Let P be a poset on {x1,...,x,}. Define Q1 to be the poset
on{xi,...,&n,Y1,Y2,. .., Ym} with relations x; <qg, x; if and only if x; <p x;, and x5 <Q, Yp, <Q,
-+ <@y Yp,,- Define Qs to be the poset on {x1,...,%n,Y1,Y2,...,Ym} with relations z; <q, ; if and
only if v; <p xj, and y,, <Q, - <Qs Yo <0, ¢ Then, we have

/ g 0) (g1 =90y gy F(, L wn) gy - dgan
o(P)

= [m]q' f(xlv LR amn)dqxl e dqxndqyl e dqyma (10)

/ qmaj(p)x;nf(xlv"'7xn)dqxl dql’n
O(P)
= [m]q!/ flx1, .. xn)dgyr - - - dgymdgxr - - - dgzy, (11)
0(Q2)

5 Examples

In this section we will compute the g-beta integral and a g-analog of Dirichlet’s integral using our results.
We will then find a connection with the general g-beta integral due to Andrews and Askey [2l].
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5.1 The q-beta integral
The following is the well known integral called the g-beta integral. We can prove this using our methods.

Corollary 5.1. We have

Lo _[n]gl[m]y!
/£ 2" (2¢; Q)mdgr = mtmt 1,

Proof. By and we have

1
/ " (2q; Q)mdqr = [n],! deyn -+ - dgyndgxdgz - - - dgZm.
0

! [
0<y1 < <yn <<z <<z, <1
By Corollary[2.3] we get the g-beta integral formula. O

Corollary 5.2. Let w be a permutation on [n]. Let T be the poset obtained from the chain {m1 < o <
-+ < mp } by adding k; elements covered by ;. Then T becomes a tree and for each element v we define
the hook length h,, of v to be the number of elements wwithw <7 v. Let maj(T) = 3, cpeg(r) fori- Then

(1)

k1 kn _
/ xl l’n dqx1~-~dqxn—m.
0<zr; < <xf,, <1 veTl'"vlg

Proof. This can be shown by applying (TI) to each factor xf‘ O

5.2 A g-analog of Dirichlet integral

We now consider the simplex
Qn ={(z1,...,2,) €[0,1]" 21 + -+ 2, <1}
Dirichlet’s integral is the following, see [1, Theorem 1.8.1]:

P(ay)...T(an)
Fl+ap+-+ay)

/ et oy dy, = (12)
Qp

By introducing new variables y; = x1 + - - - + x; and integers k; = a; + 1, we get an equivalent version

of (T12)

k!l k!
k1 ko kn _ 1 n
vt (2 —y1)™ - (Y = Yn—1)"dyy -+ dyn = N K)
/0<y1<y2<~-<yn<1 ' o otk E)!
We obtain a g-analog of (T3) as follows.
Corollary 5.3. For nonnegative integers k1, . . . , ky, we have
[kl]q! e Ufn]q!

Y Q1 /Y23 ka5 - (QUn—1/Yn; O Y Ay -+ - dgyn = i

/OSylsyzsmgyngl ntky+ o+ kg
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Proof. By applying (TT) to the factor y¥* and (@) to the factors (qyi_1/vs; q)w,y" for 2 < i < n, the left
hand side is equal to

[kl]q![kQ]q! et [kn]q' / dqxl,l et dqxl,kldqyldqxll T dqx2,k2dqy2 e dqgjn,l et dqxn,kndqyna
Q

where
Q={0<z11< <@, <Y1 <201 < <@op, <Y< <mp1 <<y, <y, <1}
By Corollary 2.3] we obtain the right hand side. O

5.3 The general q-beta integral of Andrews and Askey
In this subsection, we will show that Theorem [2.2]is related to the following result of Andrews and Askey
[2] on a generalization of the ¢-beta integral: for |¢| < 1,

/b (42/0; @)oo (92/6:@)oe ;- (1= 4)(4 @)oo (AB; 4)o0ab(a/b; @)oo (b/a; @)oo (14)
a ( '

Az/a;Q)oo(Ba/biq)oe " (A5 0)0(B; @)sc(a = 0)(Ba/b; q)oo (Ad/ a5 q) oo
Let 7 € G,,. We will compute the integral in Theorem in a different way. First we decompose
m into 7 = onT using the largest integer n. Suppose that o and 7 have r and s letters respectively and
des(o) = k1, des(t) = ko. Thenn =r+s+landk =k; + ko + 1if ke > 1land k = k; if ks = 0.
The integral in Theorem [2.2]can be written as

b
/ / deyr -+ dqyr/ dgz1 -+ dgzs | dgy,
a \Ja<e,, < <ap, <an @<y <<z, <b

where y1,...,y, and z1, ..., 25 are obtained by rearranging z,,,...,%,, and ,, ...,z , respectively
so that subscripts are increasing. By applying Theorem [2.2]to the two inside integrals, the above is equal
to

b .r_maj(o) bs maj(7)
T q —k q —k
— (e " e q)r — 5 (xq " /by q)sdg. (15)
/a [r]q! [s]q! !

Note that maj(m) = maj(o) + maj(r) + (r + 1)(ke + 1) if s > 1 and maj(w) = maj(c) if s = 0. In
either case we can write maj(m) = maj(o)+maj(r)+ (r+1)(k—kq). Since (T3) is equal to the integral
in Theorem [2.2] we obtain the following.

Proposition 5.4. Let n,r, s, k1, ko be nonnegative integers such thatn =r+ s+ 1, k1 <7, ks < s, and
k=ki+ko+1lifs>1landk =kyifs=0. Then

b 1]
_ _ rlg!slg! kD (r _
/ 2" (g™ /23 @) (w4~ fb; @)sdg = LI ][jﬂ[ ,]q bR (g7 big) .
a q-*

We now consider the case s > 1 in Proposition@ so that £ = k1 + k2 + 1. One can rewrite the integral
in Proposition 5.4 as

N b 1—r+ky /,. —ka /1.
(_1)Tarq(2)fk1r/ ((Eq /a,q)oo(ifq : /b’ q)OOdql,
(g +1 /a5 @)oo (2q° %2 /b5 0) oo

bgk2tl

, 1—r+kq . —ko .
_ (_1)rarq(2)—kﬂ-/ (zq /@5 @)oo (2" /b; q)oodqx,

aq" k1 (qu1+1/a; Q)oo(xq87k2 /ba q)oo
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where the equality follows from the fact that the integrand is 0 if z = bg’ for 0 < j < ko and x = ag’ for
0 < j <r — ki — 1. Thus Proposition [5.4]is equivalent to

ko+1 r -
/bq (2q" 4" Ja: @)oo (2g ™ /b )os (1) 0 1] (o]l R (ag " /g
a1 (@qM /03 q) o (2q° 7R b1 q)oe a”[n]g!

One can check that the above equation is the special case of (14]) with substitution

(a,b, A, B) = (ag" "1, bgh+1, g+ 5+,

6 ¢-Selberg integrals

In this section we will find a combinatorial interpretation for a g-Selberg integral.

For a set of variables z = (z1, ..., ,) we denote
A)= [ (@)
1<i<j<n

There are many generalizations of the Selberg integral, see [4]]. In this section we consider the following
two g-Selberg integrals:

1 n
( /Ba / / ngy—l(qzi;q)ﬁ—l H z?m (qlimxi/zj;q)gmdqxl"'dql'n,

1<i<j<n
( Ba = / / quu )ﬂflAn,m(iv)dqul te dqxnu
where
Anm(@)= [ = (@ "ifasiq), o (@i/zi0),, =A@) [] 23" (¢ "i/xi54),,, -
1<i<j<n 1<i<j<n
It is easy to check that A,, ,,, () is symmetric in the variables 1, xa, . . ., Tp.

Askey [3]] conjectured that

_ m?(2) TT Fale + G = Dm)Ty(8 + (j = Ym)Ty (1 + jm)
ASn(avﬁam) - q +2 ];[ O[+,8+ (7’L—|-j . Q)m)Fq(l +m) ) (16)

which has been proved by Habsieger [5]] and Kadell [6] independently. Kadell [7, Eq. (4.11)] showed that

m ]
AS,(a, B,m) = [”]q, KSn(a, B, m). 17)
n!
Since the integrand of KS,, («, 3, m) is symmetric under any permutation of z1, . . . , 2, and zero when-
ever xr; = x;, we have

n

KS, (o, 8,m) = n!/ H N qri; ) g1 B (@) dgy - - - dgvy,.
0<z;<---<z,<1 1
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Thus we have

1 n
Sn(a, B,m —/ va?_l(qwi;q)ﬁ_l I = (¢ xj/2is0),,, dewr - dgan
1=1

1<i<j<n
n
= [n]qm!/ Hx?il(qxi; Q) p—10nm(x)dgzy -+ dgp.
<z <<z, <1 i=1
By (16) and (I7), we have
/ Hxa ! (qzi;q H x?mil (ql_mxi/xﬁ Q)Qm_l A(z)dgzy - - dgzy,
0<z; <+ <zp<1l; 1<i<j§n

n

—_ qam(g)+2m2(g) H Fq(a + (.] — l)m)rq(ﬁ+ (.7 — l)m)rq(]m) )
Lgla+ B+ (n+j—2)m)le(m)

(13)
j=1

(a) (b) w®

We define the Selberg poset P(n,r,s,m) to be the poset in which the elements are z;, y; i
[m]

fori,j € [n],a € [r],b € [s], k € [m] with i # j, and the covering relations are as follows:
o xi<w§}j) <--~<w£37)<xjf0r1§i<j§n,
omz<w(m) ~<w§}i)<xjf0r1§i<j§n,
oygl) <yz()<mi<zi(1)<-~-<z§s)f0r1§i§n.

For an example of P(n,r, s, m), see Figure
The following theorem implies that the g-Selberg integral is the g-volume of an order polytope up to a
certain factor.

Theorem 6.1. We have

/ [eitaraa, T] o (@ "afeya), o0 (eufosia), dos - dy,
0

<z <-<zp<l, 1<i<j<n

n

= OO (sl (b [ dgWd,Yd, XdyZ,
O(P(n,r,s,m))
where the order of integration d,Wd,Y dy X dyZ is given by
n
I dw?-- <Hd g > <Hd x) (quz§1>...dq255>> . (19)
1<i#j<n i=1
In the order of integration (19), the order of d, w and dqw,, ), for (4,7) # (¢, j') does not matter.

The following corollary gives a combmatorlal 1nterpretat10n for the g-Selberg integral in terms of linear
extensions.
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m = 3 with labeling.

)

=1

S

I

r=2

forn =4,

)

m

S,

)

n,r

Fig. 1: The Selberg poset P(
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Corollary 6.2. We have

/ =i T 27 (¢ " wi/zsiq),, ) (@i/25:q),, dgr - dgn
0<z: <<z, <1 i=1 1<i<j<n
_ DO ) ([s]e)" (m]e)*E) 5 mai(e)
4 weL(P(n,r,s,m),w)
where
Nn(r+s+1)+2m<g),
and, w is the labeling of the Selberg poset P(n,r, s, m) as shown in Figure
Corollary 6.3. We have
3 g2
w€L(P(n,r,s,m),w)
PO H [+ (= Dmilglls + G — Dimlllim — 1],!
()" (sl ([l ) o I+ s+ (g = 2mllm =1t

where N and w are the same as in Corollary[6.2]
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