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Oriented Flip Graphs and Noncrossing Tree
Partitions

Alexander Garver'l and Thomas McConville%t
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Abstract. Given a tree embedded in a disk, we define two lattices - the oriented flip graph of noncrossing arcs and
the lattice of noncrossing tree partitions. When the interior vertices of the tree have degree 3, the oriented flip graph
is equivalent to the oriented exchange graph of a type A cluster algebra. Our main result is an isomorphism between
the shard intersection order of the oriented flip graph and the lattice of noncrossing tree partitions. As a consequence,
we deduce a simple characterization of c-matrices of type A cluster algebras.

Résumé. A partir d’un arbre plongé dans un disque, nous définissions deux réseaux: le “flip graph” orienté des
arcs non-croisés et le treillis des partitions non-croisées de 1’arbre. Lorsque les sommets intérieurs de 1’arbre ont
degré 3, le "flip graph” orienté est équivalent au graphe d’échange orienté d’une algébre amassée de type A. Notre
résultat principal est un isomorphisme entre 1’ordre d’intersection des tissons du “flip graph” orienté et le treillis des
partitions non-croisées de I’arbre. Nous en déduisons une caractérisation simple des c-matrices des algebres amassées
de type A.
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1 Introduction

The facets of a pure, thin simplicial complex form a graph, often called a flip graph, where two facets are
adjacent if their intersection is a face of codimension 1. A typical example of a flip graph is the graph of
triangulations of a polygon where adjacent triangulations differ by a diagonal flip. This graph is highly
connected, a consequence of the fact that it is the 1-skeleton of a polytope known as the associahedron.

Flip graphs often come with a natural acyclic orientation. For example, labeling the vertices of a poly-
gon 1,...,n in counter-clockwise order, two diagonals {4, k}, {j,!} cross exactly wheni < j < k <.
If a triangulation 7 is obtained from another triangulation 7~ by replacing the diagonal {i, k} with {j, [}
where i < j < k < [, then we orient the edge 7 — T’. The transitive closure of this relation is the
well-studied Tamari order. The lattice structure of the Tamari order and similar posets called Cambrian
lattices [[L1] reveal many interesting combinatorial properties of Catalan objects.

TEmail: garv0102@umn . edu. Supported by RTG grant NSF/DMS- 1148634
fEmail: thomasmc@mit .edu

1365-8050 (©) 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France


http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html

540 Alexander Garver and Thomas McConville

Using the theory of cluster algebras, one may define many different orientations on the graph of tri-
angulations of a polygon. Namely, given a triangulation 7, there exists a “natural” acyclic orientation,
denoted F'G(T), such that 7 is the unique source. This construction is given in

Although these oriented flip graphs have the same underlying graph structure, they tend to be non-
isomorphic as posets. The fact that these oriented flip graphs are all lattices comes from a very surprising
connection to representation theory: the oriented flip graph is the Hasse diagram of the lattice of torsion
classes of some associative algebra. In the full paper, we prove this result combinatorially. More gen-
erally, given a polygonal subdivision of a convex polygon, we define a poset of compatible polygonal
subdivisions and prove that it forms a lattice.

For our purposes, it is more convenient to define the orientation of the flip graph in terms of the tree
dual to a given polygonal subdivision. Namely, given a tree 7' embedded in a disk, we define in §2|a flip
graph F'G(T) of maximal collections of pairwise noncrossing geodesics between leaves of T'.

Theorem 1.1 The oriented flip graph }@ (T') is a congruence-uniform lattice.

Congruence-uniformity is a lattice property that will be defined in §4 Briefly, a finite congruence-
uniform lattice is a lattice that may be constructed by a sequence of interval doublings starting from a
1-element lattice; see Figure |5} The doubling construction induces a natural edge-labeling on FG(T).
This labeling defines a cyclic action F' — F’ where the up-labels of F' are the down-labels of F’. We
refer to this action as Kreweras complementation since it reduces to the usual Kreweras action for the
Tamari order.

To prove Theorem|I.1] we define an auxiliary lattice of biclosed sets in §3| Then we define a surjective
map from biclosed sets to triangulations that identifies F'G(T') as a quotient lattice of the lattice of biclosed
sets.

Another significant class of Catalan objects are noncrossing partitions [9]. A partition of [n] :=
{1,...,n} is said to be crossing if there exist two distinct blocks B, B’ and elements i, k € B, j,l € B’
such that ¢ < j < k < [. It is noncrossing otherwise. Noncrossing partitions are well-studied combina-
torial objects. They have generalizations to finite Coxeter groups [1]] as well as connections to the theory
of cluster algebras [12] and the representation theory of finite dimensional algebras [8]].

Given a tree T embedded in a disk, we define a noncrossing tree partition to be a partition of the set of
interior vertices of T satisfying a similar noncrossing condition; see §5| We prove that the poset NCP(T')
of noncrossing tree partitions of 7" ordered by refinement is a lattice.

As a congruence-uniform lattice, }@ (T") admits a alternate ordering known as the shard intersection

order ‘If(ﬁ(T)), which we recall in We prove the following surprising connection between the
oriented flip graph and the lattice of noncrossing tree partitions.

Theorem 1.2 There is a Kreweras-equivariant poset isomorphism between \P(F@ (T)) and NCP(T).

We were motivated to study these posets by a connection to cluster algebras. Given a tree 7" whose
interior vertices have degree 3, one may associate a quiver () that is mutation-equivalent to a path quiver.
The exchange graph on the cluster structure defined by () comes with a natural acyclic orientation EG(Q).
This directed graph is called the oriented exchange graph, and it is isomorphic to FG(T'). Translating
Theorem I.2]into the language of cluster algebras, we give a nice characterization of c-matrices associated
to (). More details on this connection are given in
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In this extended abstract, we describe our main results without proof. Proofs will be given in the full
version of the paper.
Acknowledgements: We thank the referees for their careful reading and helpful suggestions.

2 Noncrossing complex

A tree is a finite connected acyclic graph. Any tree may be embedded in a disk D? such that a vertex is
on the boundary if and only if it is a leaf. Unless specified otherwise, we will assume that any tree comes
equipped with such an embedding. We will refer to non-leaf vertices of a tree as interior vertices, which
we will depict by white dots in our figures. Given trees T, T' embedded in D2, we consider T and T” to
be equivalent if there is an isotopy between the spaces D? — T and D? — T".

Let T be a tree embedded in D2. The embedding of T in D? determines a collection of 2-dimensional
regions in D? that we will refer to as faces. A corner of a tree is a pair (v, F') consisting of an in-
terior vertex v and a 2-dimensional face F' containing v. We denote the set of corners of a tree 1" by
Cor(T"). The embedding that accompanies 7' endows each interior vertex with a cyclic ordering. Given
two corners (u, F), (u, G) € Cor(T'), we say that (u, G) is immediately clockwise (resp. immediately
counterclockwise) from (u, F') about w if F' N G # () and G is clockwise (resp. counterclockwise) from
F according to the cyclic ordering at u.

An acyclic path supported by a tree T is a sequence (v, . . ., v;) of vertices of T with ¢ > 1 such that
v; and v; are adjacent if and only if |¢ — j| = 1. In particular, vertices of T" are not acyclic paths. We
typically identify acyclic paths with their underlying vertex sets; that is, we do not distinguish between
paths of the form (vg, ..., v;) and (vy, ..., v0).

An arc is an acyclic path whose endpoints are leaves such that for all 4, the edges (v;—1,v;) and
(vi, vi4+1) are incident to a common face. We say p contains a corner (v, F') if v = v; for some i =
0,1,...,t and F is the face that is incident to both (v;_1,v;) and (v;,v;41). Since an arc p divides D?
into two components, it determines two disjoint subsets of the set of faces of T that we will call regions.
We let Reg(p, F) denote the region defined by p that contains the face F'. Observe that if Reg(p, F') and
Reg(p, G) are the two regions defined by p, then {Reg(p, F'),Reg(p, G)} is a set partition of the set of
faces of T'.

A segment is an acyclic path with the same incidence condition as an arc, but whose endpoints are not
leaves. Since trees have unique geodesics between any two vertices, if the endpoints of a segment or arc
are v, w, we may denote the path by [v, w]. Let Seg(T") be the set of segments of T".

Definition 2.1 We say that two arcs p = (vg, .. .,vt),q = (wo, - .., ws) of a tree T are crossing along a
segment s = (ug, ..., U,) if

1) each vertex of s appears in both p and q,

1) if R, and Ry are regions defined by p and q, respectively, then R, ¢ Ry and Ry ¢ R,.
We say they are noncrossing otherwise. The noncrossing complex ANC(T) is the abstract simplicial
complex whose simplices are pairwise noncrossing collections of arcs supported by a tree T.

Example 2.2 Let T denote the tree shown in Figureand letp = (7,10,11,12,5) and ¢ = (6,10,11,9,1)
be arcs of T. The arc p contains the corners (10, F), (11, F5), and (12, F5). The two regions defined by
p are Reg(p, F1) = {F\, Fy, F3, Fs, F7, Fg} and Reg(p, Fy) = {Fy, Fs}. The arcs p and q cross along
the segment s = (10, 11) shown in purple.
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Fig. 1: Two crossing arcs Fig. 2: An oriented flip graph

Lemma 2.3 Let F be a face of ANC(T) and (v, F) € Cor(T) a corner contained in some arc of F.
The partially ordered set ({p € F : p contains (v, F)}, <, p)), where p1 <, ) p2 if and only if
Reg(p1, F) C Reg(pa, F), is linearly ordered. Thus it has a unique maximal element, denoted by p(v, F).

If p is an arc whose vertices all lie on a common face, then p is noncrossing with every arc of 7'. We call
such an arc a boundary arc. The reduced noncrossing complex AN (T') is the deletion of all boundary
arcs from ANC(T). Figure shows the two facets of AN (T) where T is the tree drawn in black.

Proposition 2.4 Let F be a facet of AN (T') and let p be an arc of F.

i) if p is a nonboundary arc, there are exactly two corners (u, F'), (v, G) € Cor(T) such that p =
p(u, F) = p(v, G). Furthermore, F and G belong to different regions defined by p.

ii) if p is a nonboundary arc with p = p(u, F') = p(v, G), there is a unique nonboundary arc q such
that (F\{p}) U {q} is a facet of ANC(T). Furthermore, q¢ = p(u, F') = p(v, G') where (u, F")
and (v, G") are both immediately clockwise or both immediately counterclockwise from (u, F') and
(v, G), respectively.

Proposition 2.5 The simplicial complex AN C(T) is pure (i.e. every facet has the same dimension) and
thin (i.e. every codimension 1 simplex is a face of exactly two facets).

Using Proposition [2.4] i), we refer to the operation sending F — (F\{p}) U {¢} to a new facet of
ANC(T) as a flip of F at p (see Figure [2) and denote it by tip- We define the flip graph of T', denoted

FG(T), to be the graph whose vertices are facets of ANC (T) and two vertices are connected by an edge if
the corresponding facets differ by a single flip. This allows us to define the following fundamental object.

Definition 2.6 Let F1,F2 € FG(T) and assume Fo = p,F1. Using the notation of Proposition
i1), we orient the edge connecting F, and Fy so that F1 — Fo if and only if the corner (u, F") (resp.
(v, G")) is immediately clockwise from the corner (u, F) (resp. (v, G)) about vertex u (resp. v). The

resulting directed graph is the oriented flip graph of T, denoted by F@ (T).

Example 2.7 Figure |2| and 3| show examples of oriented flip graphs. If every internal vertex of T' has
degree 3, then AN (T) is isomorphic to the dual associahedron (see Figure
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Fig. 3: An oriented flip graph and the corresponding associahedron.

3 Lattice quotient description of oriented flip graphs

In this section, we identify the oriented flip graph as both a quotient lattice and a sublattice of another
lattice defined below.

Fix a tree T' embedded in a disk. Two segments s, ¢ € Seg(7T’) are composable if they are edge disjoint
and their union is a segment. We denote the composite segment as s o t. A subset X of Seg(T') is closed
if for s,t € X, if s and ¢t are composable then s ot € X. We say X is biclosed if both X and its
complement Seg(7T) — X are closed. We let Bic(T') denote the poset of biclosed subsets of Seg(T),
ordered by inclusion.

By [[7ll, Bic(T') is a graded lattice. Moreover, it has the additional structure of a congruence-uniform
lattice described

To prove that FG(T) is a lattice, we define a map 7 from Bic(T') to the facets of AN (T') and show
that it has the structure of a lattice quotient map as in the following lemma.

Lemma 3.1 Letn : L — X be a surjective map from a finite lattice L to a finite set X. If
o () is a closed interval for all z € X, and

e the maps 7|, w' : L — L where 7 (y) = minn~1(n(y)) and 7' (y) = maxn~1(n(y)) are order-
preserving,

then X inherits the structure of a lattice via 1. Explicitly, for x1,xo € X and y1,y2 € L withn(y;) = x;,
x1 Ve =n(y1 Vy2) and x1 A 2 = n(y1 A ya).

All that remains is to show that the directed graph }@ (T) is the Hasse diagram of the lattice structure
on the facets of ANY(T) induced by 7.

We define 7 as follows. Let X € Bic(T'). Given a corner (v, I), let p(,, ) be the (unique) arc supported
by 7" such that for any interior vertex u of p(,, r distinct from v, the following condition holds:

e orienting p(, zy from v to u, the arc p(, p) turns left at v if and only if [v, u] is in X.
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Fig. 4: (left) A blue arc defined by 7 at the circled corner with respect to the red biclosed set of segments; (right) The
triangulation defined by n

One may show that the set of arcs p(,, ) indexed by the corners of T is a facet of the noncrossing

complex. We let i : Bic(T') — F@(T) be the map 7(X) = {P(v,F)}(v,r) Where X € Bic(T") and arcs
D(v,F) are defined as above.

In Figure E], a biclosed set X of segments is drawn in red. On the left, the arc p(, r) is drawn in blue
where (v, F') 1s the circled corner. On the right, the triangulation n(X) is drawn in blue.

To obtain a sublattice description, we define a map ¢ : F'G(T') — Bic(T) as follows. For an arc p, let
C), be the set of segments s such that p leaves s to the left at each endpoint. Given a triangulation F, let
¢(F’) be the smallest closed set containing | ¢ p Cp-

Theorem 3.2 The maps n : Bic(T) — }@(T) and ¢ : }@(T) — Bic(T) identify ﬁ(T) as a quotient
lattice and a sublattice of Bic(T), respectively.

4 Congruence-uniformity

The value of identifying FC (T') as a quotient of Bic(7T') is that Bic(7") has a much simpler structure. The
lattice of biclosed sets of segments has some additional lattice structure that passes to the oriented flip
graph via this quotient map. In this section, we consider the congruence-uniform lattice structure of these
posets.

Given a subset I of a poset P, let P<; = {x € P: (Jy € I) x < y}. If I is a closed interval of a
poset P, the doubling of P at I is the subposet of P x 2, denoted P[I], induced by the set P<; x {0} U
((P — P<y)UI) x {1}. Some doublings are shown in Figure[5| A lattice L is congruence-uniform (or
bounded) if it may be constructed from a 1-element lattice by a sequence of doublings.

A CU-labeling is a labeling of the covering relations of a congruence-uniform lattice by the steps in
the doubling construction in which they were created. For example, the colors on the edges of Figure 5]
form a CU-labeling. More precisely, suppose A is the labeling already constructed for a given congruence-
uniform lattice L, and let I be a closed interval of L. Let s be a label that has not appeared in the labeling
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Fig. 5: A sequence of interval doublings
A. Then for (x,€) < (y,€') in L[I], define

S ifr=y
A 9 ) ) ! =
((@,6), (3.€) {A(x, y) otherwise.
Theorem 4.1 [[7] Both Bic(T') and FC (T') are congruence-uniform lattices. Moreover, F‘—C>}'(T) has a
CU-labeling \(F < F') = s if F > F' is an edge of the oriented flip graph.

For an element z, let \| (z) = {\(y,z) : y € L, y<x}. Dually, let \T(2) = {\(z,y) : y € L, z<y}.

Lemma 4.2 Let L be a congruence-uniform lattice with CU-labeling ). For x© € L, there exists a unique
element y such that \T(z) = A (y).

Lemma defines a map Kr : L — L, called the Kreweras map, where Kr(x) = y if 2 and y are
defined as in the lemma. A dual statement to Lemma[4.2]shows that Kr is a bijection.

Given a congruence-uniform lattice L, the shard intersection order can be defined from the labeling
A : Cov(L) — S as follows. For z € L, let yq, ..., yx be the elements in L such that (y;, x) € Cov(L).
Let 1() be the set of labels appearing on covering relations in the interval [A¥_, y;, z]. More precisely,

k
P(x):={seS: /\yigw%zgx}.

i=1

The shard intersection order W(L) is the collection of sets ¢ (x) for « € L, ordered by inclusion.

The shard intersection order derives its name from a construction on real hyperplane arrangements due
to Nathan Reading. Given an arrangement .4 of hyperplanes in R™ with a distinguished chamber, the
elements of A are divided into (n — 1)-dimensional cones called “shards”. The shard intersection order
is the lattice of intersections of shards. The connection between the geometric definition and the lattice
definition above is explained in the discussion following Theorem 1-7.24 of [13]].

5 Noncrossing tree partitions

For this section, fix a tree 1" whose interior vertices all haAve degree 3, and let T be the subtree consisting
of interior vertices only. Given a subset B of vertices of T, there is a unique inclusion-minimal collection
Seg(B) of non-overlapping segments whose endpoints lie in B. Each segment [a, b] may be represented
by a curve y in the disk with endpoints a and b such that
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Fig. 6: (left) The noncrossing tree partition 167 — 20 — 3458 — 9 (right) A noncrossing tree partition in red together
with its Kreweras complement 1 — 27 — 3 — 40 — 5 — 6 — 89 in green

e ~ leaves each of its endpoints to the right, and
e ~ does not intersect any edge or vertex of 7" not in [a, b].

Such a curve « is called a red admissible curve for [a,b]. A green admissible curve satisfies the
same conditions except that it leaves each of its endpoints to the left. Segments s and ¢ are said to
be noncrossing if there exist red admissible curves for s and ¢ that do not intersect. A collection of
admissible curves of some noncrossing segments is given in Figure[6] R

A noncrossing tree partition of 7" is a partition { By, ..., B;} of the vertices of T such that for any
two distinct blocks B;, B;:

o if s € Seg(B;), t € Seg(B;) then s and ¢ are noncrossing, and
e there do not exist a € B;, b,c,d € B such that {a} = [b,c] N [¢,d] N [b,d].

The set NCP(T') of noncrossing tree partitions of 7T is partially ordered by refinement. In general, this
poset is not isomorphic to the lattice of noncrossing set partitions (for example, see Figure (/).

Proposition 5.1 NCP(T)) is graded lattice. If T has n interior vertices, the number of noncrossing tree

.o, . 1(n n
partitions of rank k is the Narayana number - ( k) ( & +1).

Given a noncrossing tree partition 7 = { By, . .., B; }, there is a unique set of segments .S such that there
exists a collection of red admissible curves for Seg(w) and green admissible curves for S such that no
two curves intersect, and the curves form a tree on the interior vertices of 7'. The Kreweras complement
Kr(7) is the noncrossing tree partition defined by S. Kreweras complementation is a bijection on NCP(T')
such that rk(7) + rk(Kr(7)) =n — 1.

For F € FG(T), let 1(F) be the most refined set partition on the vertices of 7' such that any two
vertices connected by a segment of A (F) are in the same block. For example, if F is the triangulation in
Figure EI, then ¢ (F) is the noncrossing tree partition defined by the red segments in Figure @
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Fig. 7: A noncrossing tree partition lattice

Theorem 5.2 The map ) is a Kreweras-equivariant bijection from F( é(T) to the set of noncrossing tree
partitions of T. Furthermore, this bijection is a poset isomorphism between the shard intersection order

of FG(T) and NCP(T).

6 Connection to cluster algebras

When T is a tree with internal vertices of degree 3, the oriented flip graph of 7' is isomorphic to the
oriented exchange graph [2] of a quiver Q7 defined by T'. By [[10]], the vertices of the oriented exchange
graph of Q7 index the clusters in the cluster algebra [5] defined by Q. Also, a quiver defines a family
of integer matrices known as c-matrices [6]]. Such matrices are related to noncrossing partitions of finite
Coxeter groups [12] and many important objects in representation theory [3]. Our main result is that c-
matrices of @ are classified by noncrossing tree partitions of T’ paired with their Kreweras complement.

A quiver Q@ is a directed graph without loops or 2-cycles. In other words, @ is a 4-tuple (Qo, Q1, s, t),
where Qo = [m] := {1,2,...,m} is a set of vertices, Q is a set of arrows, and two functions s, ¢ :
Q1 — Qo defined so that for every a € Q1, we have s(a) <> t(a). An ice quiver is a pair (Q, F)
with @) a quiver and F' C @) frozen vertices with the restriction that any 4, j € F have no arrows of )
connecting them. By convention, we assume Qo\F = [n]Jand F = [n+1,m] :={n+1,n+2,...,m}.
Any quiver Q is regarded as an ice quiver by setting Q = (Q, 0).

The mutation of an ice quiver (Q), F') at a nonfrozen vertex k, denoted px, produces a new ice quiver
(urQ, F) by the three step process:

(1) For every 2-path ¢« — k — j in (), adjoin a new arrow ¢ — j.
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(2) Reverse the direction of all arrows incident to k in Q.
(3) Delete any 2-cycles created during the first two steps.
We show an example of mutation below with the nonfrozen (resp. frozen) vertices in black (resp. blue).

@ F) = 1/ \3 = 1@;3 = (12Q.F)
7 4/

The information of an ice quiver can be equivalently described by its (skew-symmetric) exchange
matrix. Given (Q, F'), we define B = B(g )y = (b;) € Z™*™ := {n x m integer matrices} by
bij = #{i % 5€Qiy—#{j > i€ Q}. Furthermore, ice quiver mutation can equivalently be defined
as matrix mutation of the corresponding exchange matrix. Given an exchange matrix B € Z"*"™, the
mutation of B at k € [n], also denoted py,, produces a new exchange matrix px(B) = (b;) with entries

o —bi; : ifi=korj=k
U by 4 Danlbks ke otherwise.

For example, the mutation of the ice quiver above (here m = 4 and n = 3) translates into the following
matrix mutation. Note that mutation of matrices and of ice quivers is an involution (i.e. pgux(B) = B).

0 2 0 0 0 -2 2 0
M2
B(QF) = -2 0 1 0 — 2 0 -1 0 = B(;wQ,F).
0 -1 0]-1 -2 1 0| -1

Let Mut((Q, F')) denote the collection of ice quivers obtainable from (@, F’) by finitely many mutations
where such ice quivers are considered up to an isomorphism of quivers that fixes the frozen vertices.
Such an isomorphism is equivalent to a simultaneous permutation of the rows and first n columns of the
corresponding exchange matrices. N N

Given a quiver @), we define its framed quiver to be the ice quiver Q) where Qg := Qo U [n + 1, 2n],
F=[n+1,2n],and Q; :== Q1 U{i — n+i:i€ [n]}. We define the exchange graph of Q, denoted
EG (@), to be the (a priori infinite) graph whose vertices are elements of Mut(@) and two vertices are
connected by an edge if the corresponding quivers differ by a single mutation.

The exchange graph of @ has natural acyclic orientation using the notion of c-vectors. We refer to this
directed graph as the oriented exchange graph of (), denoted E‘d (@). Given @ we say that C' = C'g is
a c-matrix of Q if there exists R € EG(Q) such that C is the n x n submatrix of By = (bij)iemn),jc2n]
containing its last n columns. That is, C' = (bi;)icn),jen+1,2n)- We let emat(Q) := {Cr : R €
EG (@)} A row vector of a c-matrix, ¢;, is known as a c-vector. Since a c-matrix C'is only defined up to
a permutations of its rows, C' can be regarded simply as a set of c-vectors.

The celebrated theorem of Derksen, Weyman, andAZelevinsky [4, Theorem 1.7], known as the sign-
coherence of c-vectors, states that for any R € FG(Q) and i € [n] the c-vector ¢; is a nonzero element
of Z%, or Z2%,. If ¢; € ZZ, (resp. ¢; € ZZ,), we say it is positive (resp. negative). It turns out
that for any quiver (), one has that c-vec(Q) := {c-vectors of Q} = c-vec(Q)T U —c-vec(Q)" where
c-vec(Q)" := {positive c-vectors of Q}.
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Fig. 9: The oriented exchange graph of of Q = 1 — 2 and the corresponding c-matrices and noncrossing tree
partitions with their Kreweras complements.

Definition 6.1 /2] The oriented exchange graph of a quiver Q is the directed graph whose underlying
unoriented graph is EG(Q) with directed edges (R',F) — (ui.R', F) if and only if ¢}, is positive in
Cri. In FigureEI we show B (@) and we also show all of the c-matrices in c-mat(Q)) where Q = 1 — 2.

Let T be a tree whose internal vertices are of degree 3. Let Q1 be quiver whose vertices are in bijection
with the edges of T" containing no leaves and whose arrows are those of the form e; — e satisfying:
1) ey and eq define a corner of T,
1) eq is counterclockwise from e; (see Figure |§|)

Theorem 6.2 Assume that T is a tree whose internal vertices are of degree 3.

1. ﬁ(T) ~ ﬁ (@T) as posets and this isomorphism commutes with flips and mutations.

2. The map o : Seg(T) — c-vec(Q)" defined by s — (ay,. .., a,) € ZY, where a; := 1 if the edge
corresponding to vertex i of Qr appears in s and a; := 0 otherwise, is a bijection.
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3. The map { (7, Kr(m)) }rence(r) — €-mat(Q) defined by sending (7, Kr(m)) to the c-matrix C whose

positive c-vectors are {¢(s) : s € Seg(B;) where B; € Kr(w)} and whose negative c-vectors are
{—¢(s) : s € Seg(B;) where B; € T} is a bijection (see Figure[9).
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