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Normal Supercharacter Theory
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1York University, Toronto, Canada M3J 1P3

Abstract. There are three main constructions of supercharacter theories for a group G. The first, defined by Diaconis
and Isaacs, comes from the action of a group A via automorphisms on our given group G. Another general way to
construct a supercharacter theory for G, defined by Diaconis and Isaacs, uses the action of a group A of automor-
phisms of the cyclotomic field Q[ζ|G|]. The third, defined by Hendrickson, is combining a supercharacter theories of
a normal subgroup N of G with a supercharacter theory of G/N . In this paper we construct a supercharacter theory
from an arbitrary set of normal subgroups ofG. We show that when we consider the set of all normal subgroups ofG,
the corresponding supercharacter theory is related to a partition of G given by certain values on the central primitive
idempotents. Also, we show the supercharacter theories that we construct can not be obtained via automorphisms or
a single normal subgroup.

Résumé. Il y a trois constructions principales de théories des supercaractères pour un groupe G. La première, définie
par Diaconis et Isaacs, provient de l’action d’un groupe A par automorphismes sur un groupe donné G. Une autre
méthode générale pour construire la théorie des supercaractères de G, définie par Diaconis et Isaacs, utilise l’action
d’un groupe A d’automorphismes du corps cyclotomique Q[ζ|G|]. La troisième, définie par Hendrickson, combine
une théorie de supercaractères d’un sous-groupe distingué N de G avec une théorie des supercaractères de G/N .
Dans cet article, nous construisons une théorie des supercaractères à partir d’un ensemble arbitraire de sous-groupes
distingués de G. Nous montrons que lorsqu’on considère l’ensemble de tous les sous-groupes distingués de G, la
théorie des supercarcatères correspondante est liée à une partition de G donnée par certaines valeurs des idempotents
centraux primitifs. Nous montrons aussi que les théories des supercaractères que nous construisons ne peuvent pas
être obtenues par automorphismes ou par un unique sous-groupe distingué.
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1 Introduction
Let G be a finite group, we denote the set of irreducible characters of G by Irr(G). The conjugacy
class containing g and its cardinality are denoted by Cg and mg respectively. For a subset S of G, let
Ŝ =

∑
s∈S s.

Let Un(q) denote the group of n × n unipotent upper triangular matrices over a finite field Fq . The
classification of the irreducible characters of Un(q) is a well-known wild problem, provably intractable
for arbitrary n. In order to find a more tractable way to understand the representation theory of Un(q),
André (1995) defines and constructs supercharacter theory. Yan (2001) shows how to replace André’s
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construction with more elementary methods. Diaconis and Isaacs (2008) axiomatize the concept of super-
character theory for an arbitrary group. They mention how to obtain a supercharacter theory for G from
the action of A on G by automorphisms. They also generalize André’s original construction to define a
supercharacter theory for algebra groups, a group of the form 1+J where J is a finite dimensional nilpo-
tent associative algebra over a finite field F of characteristic p. Later, in Hendrickson (2012), it was shown
that how to construct other supercharacter theories for an arbitrary group G by combining certain super-
character theory for a normal subgroup N of G with a supercharacter theory for G/N . Also in Aguiar
et al. (2012) the authors obtain a relationship between the supercharacter theory of all unipotent upper
triangular matrices over a finite field Fq simultaneously and the combinatorial Hopf algebra of symmetric
functions in non-commuting variables.

Let N(G) be the set of all normal subgroups of G. Let S(G) be the set of all subsemigroups A of
N(G) such that

1. {1}, G ∈ A.

2. A is closed under intersection.

Define for N ∈ A
N◦A = N \

⋃
K∈A,K<N

K.

For simplicity of notation, we write N◦ instead of N◦A when it is clear that N is in A. We will show
that {N◦ : N ∈ A} is the set of superclasses of a supercharacter theory, and we call such supercharacter
theory the normal supercharacter theory generated by A. In general this supercharacter theories can not
be constructed by the previous supercharacter theory constructions. Remark that when we have a larger
set of normal subgroups, the normal supercharacter theory we obtain will be finer. In particular the finest
normal supercharacter theory is obtained when we consider the set of all normal subgroups of G, and is
related to a partition of G given by certain values on the central primitive idempotents.

In Section 2, we review definitions and notations for supercharacter theories. In particular we mention
the known constructions of supercharacter theories. Next in Section 3, we define our normal super-
character theory construction. We also show that the finest normal supercharacter theory is obtained by
considering certain values of the central primitive idempotents. In Section 4, we show that the normal
supercharacter theory can not be obtained by the previous general constructions.

2 Background
We first mention the definition of supercharacter theory by Diaconis and Isaacs (2008).

A supercharacter theory of a finite group G is a pair (X ,K) where X is a partition of Irr(G) and K is a
partition of G such that:

(a) |K| = |X |,

(b) for X ∈ X , the character χX , a nonzero character whose irreducible constituents lie in X , is constant
on the parts of K and

(c) the set {1} ∈ K.
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We will refer to characters χX as the supercharacters and to the member of K as superclasses.
Every finite group has two trivial supercharacter theories: the usual irreducible character theory and the

supercharacter theory ({{1}, Irr(G) \ {1}}, {{1}, G \ {1}}), where 1 is the principal character of G.
The concept of a Schur ring is defined by Schur (1933). Hendrickson (2012) shows that there is a

bijection between the supercharacter theories of a group G and Schur rings over G contained in Z(C[G]),
the center of C[G].

Definition 2.1 Let G be a finite group. A subring S of the group algebra C[G] is called a Schur ring over
G if there is a set partitionK ofG such that {1} ∈ K, S = C-span{K̂ : K ∈ K}, and {g−1 : g ∈ K} ∈ K
for all K ∈ K.

Proposition 2.2 (Hendrickson, 2012, Proposition 2.4) Let G be a finite group. Then there is a bijection

{Supercharacter theories (X ,K) of G} ←→ {Schur rings over G contained in Z(C[G])}

(X ,K) 7−→ C-span{K̂ : K ∈ K}.

In the proof of surjectivity of the above bijection, Hendrickson does not need the condition {g−1 : g ∈
K} ∈ K from the definition of Schur ring. So we have the following corollary.

Corollary 2.3 Let G be a finite group and let K be a partition of G. Then the following statements are
equivalent.

1. K is the set of superclasses of a supercharacter theory.

2. {1} ∈ K and C-span{K̂ : K ∈ K} is a subring of Z(C[G]).

Definition. A superclass theory is a partition K of G satisfying one of the two equivalent conditions in
Corollary 2.3.

Now we discuss two main methods of constructing supercharacter theories of an arbitrary finite group.

2.1 A Group Acts Via Automorphisms on a Given Group
Given finite groups A and G, we say that A acts via automorphisms on G if A acts on G as a set, and

in addition (gh).x = (g.x)(h.x) for all g, h ∈ G and x ∈ A. An action via automorphisms of A on G
determines and is determined by a homomorphism φ : A→ Aut(G).

Suppose that A is a group that acts via automorphisms on our given group G. It is well known that A
permutes both the irreducible characters of G and the conjugacy classes of G. By a lemma of R. Brauer,
the permutation characters of A corresponding to these two actions are identical, and so the numbers of
A-orbits on Irr(G) and on the set of classes of G are equal (See Theorem 6.32 and Corollary 6.33 of
Isaacs (1994)). It is easy to see that these orbit decompositions yield a supercharacter theory (X ,K)
where members of X are the A-orbits on Irr(G) and members of K are the unions of the A-orbits on the
classes of G. It is clear that in this situation, the sum of the characters in an orbit X ∈ X is constant on
each member of K. We denote by AutSup(G) the set of all such supercharacter theories of G.
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2.2 Action of Automorphisms of The Cyclotomic Field Q[ζ|G|]
Another general way to construct a supercharacter theory for G uses the action of a group A of

automorphisms of the cyclotomic fieldQ[ζ|G|], where ζ|G| is a primitive |G|th root of unity. Given σ ∈ A,
there is a unique positive integer r < |G| such that σ(ζ|G|) = ζr|G|, and we let σ carry the class of g ∈ G
to the class of gr. In this case too, we take X to be the set of A-orbits on Irr(G), and again, K is the set of
unions of the various A-orbits on conjugacy classes. We denote by ACSup(G) the set containing above
supercharacter theory.

2.3 The ∗-Product
Suppose that A is a group that acts via automorphisms on our given group G. Let Sup(G) be the set

of all supercharacter theories of G. We say that (X ,K) ∈ Sup(G) is A-invariant if the action of A fixes
each part K ∈ K set-wise. We denote by SupA(G) the set of A-invariant supercharacter theories of G.
Note that if N is normal in G, then C ∈ Sup(N) is G-invariant if and only if its superclasses are union
of conjugacy classes of G. Also, if M,N are normal subgroup of G and N < M , then a supercharacter
theory of M/N is G/N -invariant if and only if it is G-invariant.

Notation. Let N be a normal subgroup of a group G. If L is a set of subsets of G/N , then we de-
fine L̃ = {∪Ng∈LNg : L ∈ L}. Let ψ ∈ Irr(N). We define Irr(G|ψ) = {χ ∈ Irr(G) : [χN , ψ] > 0}.
If Z is a set of subsets of Irr(N), then we define ZG = {∪ψ∈ZIrr(G|ψ) : Z ∈ Z}. Now consider
(X ,K) ∈ SupG(N). Since {1N} ∈ X , one part of XG is

{1N}G = {χ ∈ Irr(G) : N ⊆ kerχ},

which we identify with Irr(G/N) in the usual natural way.

Theorem 2.4 (Hendrickson, 2012, Theorem 4.3) Let G be a group and N be a normal subgroup of G.
Let C = (X ,K) ∈ SupG(N) and D = (Y,L) ∈ Sup(G/N). Then

(Y ∪ XG \ {Irr(G/N)},K ∪ L̃ \ {N})

is a supercharacter theory of G.

We call the supercharacter theory of G constructed in the preceding theorem the ∗-product of (X ,K)
and (Y,L), and write it as (X ,K)∗(Y,L). Also, let Sup∗(G) denote the set of all supercharacter theories
of G obtained by ∗-product.

3 Normal Supercharacter Theory
In this section we construct a supercharacter theory from an arbitrary set of normal subgroups. We call

such supercharacter theory a normal supercharacter theory.

3.1 Supercharacter Theory From Central Idempotents
In this subsection, we consider a partition of conjugacy classes and irreducible characters given by

certain values of central primitive idempotent. In the next subsection, we will see that this is a superchar-
acter theory and is given by the finest normal supercharacter theory.
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By (Lam, 1991, Proposition 8.15) every character χ ∈ Irr(G) has a corresponding central primitive
idempotent

eχ = |G|−1χ(1)
∑
g∈G

χ(g−1)g.

These idempotents are orthogonal, i.e, eχeφ = 0 when χ 6= φ. Recall that

Ĉg =
∑
i

mgχi(1)
−1
χi(g)eχi .

Therefore,

mg1− Ĉg = mg1−
∑
i

mgχi(1)
−1
χi(g)eχi = mg(1−

∑
i

χi(1)
−1
χi(g)eχi) =

mg(
∑
i

eχi
−
∑
i

χi(1)
−1
χi(g)eχi

) = mg(
∑
i

(1− χi(1)−1χi(g))eχi
)

⇒ 1− Ĉg
mg

=
∑
i

(1− χi(g)

χi(1)
)eχi =

∑
i

(1− χi(g)

χi(1)
)eχi .

Look at the last equation i.e., 1− Ĉg

mg
=
∑
i (1−

χi(g)
χi(1)

)eχi
. Let

Eg = {eχi
: 1− χi(g)

χi(1)
6= 0},Kg = ∪Eg=Eh

Ch, and Ug = ∪Eh⊆Eg
Ch.

In following example we will see that {Kg : g ∈ G} is a superclass theory.

Example 3.1 The character table of S5 is

Classes (1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
χ1 1 1 1 1 1 1 1
χ2 1 -1 1 -1 1 1 -1
χ3 4 2 1 0 -1 0 -1
χ4 4 -2 1 0 -1 0 1
χ5 5 -1 -1 1 0 1 -1
χ6 5 1 -1 -1 0 1 1
χ7 6 0 0 0 1 -2 0

By definition

E(1 2 3) = E(1 2 3 4 5) = E(1 2)(3 4),

then

K(1 2 3) = K(1 2 3 4 5) = K(1 2)(3 4).

Also,
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E(1 2) = E(1 2 3 4) = E(1 2)(3 4 5),

then
K(1 2) = K(1 2 3 4) = K(1 2)(3 4 5).

One can check that ({{1},K(1 2 3),K(1 2)}, {{χ1}, {χ2}, {χ3, χ4, χ5, χ6, χ7}}) is a supercharacter
theory. �

In the above example {Kg : g ∈ G} forms a superclass theory. A natural question arises: does
{Kg : g ∈ G} always give rise to a superclass theory? We will answer this question in Corollary 3.7.

3.2 Normal Supercharacter Theory
In this subsection we construct our normal supercharacter theory. We will show the finest normal

supercharacter theory is related to {Kg : g ∈ G} the partition of G given by {Eg : g ∈ G} a subset of the
set of all subsets of central primitive idempotents. We need the following definitions and notations in the
sequel.

If (P,≤) is a poset and CP×P is the set of all functions α : P × P → C, the associated incidence
algebra is

A(P ) = {α ∈ CP×P : α(s, u) = 0 unless s ≤ u}.

The Mobius function µ ∈ A(P ) is defined recursively by the following rules:

µ(s, s) = 1,

and
µ(s, u) = −

∑
s≤t<u

µ(t, u), for all s < u in P.

It is immediate from this definition that∑
s≤t≤u

µ(t, u) =

{
1 if s = u,
0 otherwise.

Let N(G) be the set of all normal subgroup of G. Note that the product of two normal subgroup is a
normal subgroup. We can see that N(G) is a semigroup. Recall that S(G) is the set of all subsemigroups
A of N(G) such that

1. {1}, G ∈ A.

2. A is closed under intersection.

Note that every element N ∈ A is a normal subgroup of G. We define for an element N ∈ A

N◦A = N \
⋃

K∈A,K<N
K.
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For simplicity of notation, we write N◦ instead of N◦A when it is clear that N is in A. Note that

N̂ =
∑

H∈A,{1}≤H≤N

Ĥ◦.

Thus, by Mobius Inversion Theorem we have

N̂◦ =
∑

H∈A,{1}≤H≤N

µ(H,N)Ĥ.

Example 3.2 Let G = C2 × C4 = 〈a〉 × 〈b〉. Here is the Hasse diagram for N(G), and µ(H,G) for
every H ∈ N(G) is written above the vertex H .

(1, 1)

0

〈a〉 × 1

0

〈(a, b2)〉

0

1× 〈b2〉

1

〈a〉 × 〈b2〉

−1

1× 〈b〉

−1

C2 × C4

1

By the diagram above it is easy to see that ̂C2 × C4
◦ =

∑
{(1,1)}≤H≤C2×C4

µ(H,C2 × C4)Ĥ. �

Theorem 3.3 Let A ∈ S(G). Then K = {N◦ 6= ∅ : N ∈ A} is a superclass theory.

Proof. Let N◦, H◦ ∈ K. Then by the definition of N◦ and H◦, it is easy to see that N◦ = H◦ or
N◦ ∩H◦ = ∅. Furthermore,

⋃
N∈AN

◦ = G. Therefore, K is a partition of G such that {1} ∈ K.
Let g ∈ N◦. Then Cg ∈ N . If Cg ∩ H 6= ∅ for some normal subgroup H in A and H ⊂ N , then

g ∈ Cg ⊆ H . Thus, g 6∈ N◦, yielding a contradiction. Therefore, we must have Cg ⊆ N◦. So every
member of K is a union of conjugacy classes of G. We have

N̂◦ =
∑

H∈A,H≤N

µ(H,N)Ĥ and N̂ =
∑

H∈A,H≤N

Ĥ◦.

Therefore, C-span{N̂◦ : N ∈ A} = C-span{N̂ : N ∈ A}. Since A is closed under product, C-
span{N̂ : N ∈ A} is a subalgebra of Z(C[G]). We conclude by Corollary 2.3 that K is a superclass
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theory. �

As we see in Theorem 3.3, for every A ∈ S(G), {N◦ : N ∈ A} is a superclass theory. We say a super-
character theory (X ,K) is a normal supercharacter theory if K = {N◦ : N ∈ A} for some A ∈ S(G).
We denote by NSup(G) the set of all possible normal supercharacter theories of G.

A subgroup of G is normal if and only if it is the union of a set of conjugacy classes of G. We have an
equivalent characterization of normality in terms of the kernels of irreducible characters. Recall that the
kernel of a character χ of G is the set kerχ = {g ∈ G : χ(g) = χ(1)}. This is just the kernel of any
representation whose character is χ, and so kerχ is normal subgroup. A subgroup of G is normal if and
only if it is the intersection of the kernels of some finite set of irreducible characters (James and Liebeck,
1993, Proposition 17.5); thus the normal subgroups of G are the subgroups which we can construct from
the character table of G.

Recall that

Eg = {eχi : 1−
χi(g)

χi(1)
6= 0} andKg = ∪Eg=Eh

Ch.

Consider N(G) ∈ S(G). We show that Kg = N◦ for a normal subgroup of G, and if for a normal
subgroup N of G, N◦ 6= ∅, then there is a g ∈ N such that Kg = N◦. First we prove the following
lemma.

Lemma 3.4 Assume that Eg = {eχi : i ∈ I}. If

N =
⋂

χ∈Irr(G)\{χi:i∈I}

kerχ,

then Kg = N◦.

Proof. Let k ∈ Kg . Then Ek = Eg , and so k ∈ kerχ for every χ ∈ Irr(G) \ {χi : i ∈ I}. Therefore,
k ∈ N . LetH be a normal subgroup ofG such thatH ⊂ N . Then at least there is an irreducible character
ψ ∈ Irr(G) such that H ⊆ kerψ, but N 6⊆ kerψ. If k ∈ H , then

k ∈
⋂

χ∈Irr(G)\{χi:i∈I}

kerχ ∩ kerψ,

and so Ek 6= Eg . Thus, k 6∈ Kg , yielding a contradiction. Therefore, k is in N , but k is not in any normal
subgroup H of G such that H ⊂ N , i.e., k ∈ N◦. Therefore, Kg ⊆ N◦.

Let h ∈ N◦. Then Eh ⊆ Eg . If Eg 6= Eh, there is an irreducible character ψ ∈ {χi : i ∈ I} such that
h ∈ kerψ. Let H = N ∩kerψ. Then h 6∈ N \ (N ∩kerψ). Therefore, h 6∈ N◦, yielding a contradiction.
We can conclude that Eg = Eh, and so h ∈ Kg . Thus, N◦ ⊆ Kg . �

Theorem 3.5 Let G be a group.

1. For every g ∈ G, there is a normal subgroup N of G such that Kg = N◦.

2. Let N be a normal subgroup of G. If N◦ 6= ∅, then for every g ∈ N◦, Kg = N◦.
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Proof. (1) Let Eg = {eχi
: i ∈ I} and let

N =
⋂

χ∈Irr(G)\{χi:i∈I}

kerχ.

Then by Lemma 3.4, Kg = N◦.
(2) LetN be a normal subgroup ofG such thatN◦ 6= ∅. Let g ∈ N◦. We show thatKg = N◦. Assume

that N =
⋂
i∈I kerχi. If there is an irreducible character χ ∈ Irr(G) \ {χi : i ∈ I} such that g ∈ kerχ,

then g ∈ H =
⋂
i∈I kerχi ∩ kerχ. Thus, g ∈ H ⊂ N , and so g 6∈ N◦, yielding a contradiction.

Therefore, Eg = {eχ : χ ∈ Irr(G) \ {χi : i ∈ I}}. By Lemma 3.4, Kg = N◦. �

Corollary 3.6 Let G be a group. Then for every g ∈ G, Ug is a normal subgroup of G.

Proof. Recall that
Ug =

⋃
Eh⊆Eg

Ch.

Let Eg = {eχi
: i ∈ I}. We show that

Ug = N =
⋂

χ∈Irr(G)\{χi:i∈I}

kerχ.

Let h ∈ N . We have h ∈ kerχ for every χ ∈ Irr(G) \ {χi : i ∈ I}. Therefore, Eh ⊆ Eg , and so h ∈ Ug .
We conclude that N ⊆ Ug .

Let h ∈ Ug . Then Eh ⊆ Eg , and so h ∈
⋂
χ∈Irr(G)\{χi:i∈I} kerχ = N . Therefore, Ug ⊆ N . �

As we mentioned before, the finest normal supercharacter theory is obtained when we generate a normal
supercharacter theory by N(G) the set of all normal subgroups of G. In the following corollary we show
that the finest normal supercharacter theory is equal to the supercharacter theory with {Kg : g ∈ G} as the
set of superclasses. And since everyKg is related to a set of central primitive idempotents, we can see that
the finest normal supercharacter theory corresponds to a set of subsets of central primitive idempotents.

Corollary 3.7 Let G be a group. Then {Kg : g ∈ G} = {N◦ : N ∈ N(G)} is the finest normal
superclass theory.

Proof. The normal supercharacter theory generated by N(G) has {N◦ : N ∈ N(G)} as the set of
superclasses. Since every non-empty N◦ is equal to Kg for some g ∈ G. We have {N◦ : N ∈ N(G)} =
{Kg : g ∈ G}. Therefore, {Kg : g ∈ G} is a superclass theory. �

4 NSup(G) is not a subset of the union ofAutSup(G), ACSup(G),
and Sup∗(G)

In the following example we show that Sup∗(G)∩AutSup(G) is not a subset of NSup(G) and there
is a normal supercharacter theory which is not in the union of AutSup(G), ACSup(G), and Sup∗(G).

Example. Let G = C3 × C4. Note that the supercharacter theory correspond to superclass theory
{Cg : g ∈ G} is in Sup∗(G)∩AutSup(G), but it is not inNSup(G). Therefore, Sup∗(G)∩AutSup(G)
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is not a subset of NSup(G). We now construct the normal supercharacter theory generated by A, where
A is the smallest semigroup in S(G) containing {C3 × 1, 1 × C4} and we show that this supercharacter
theory is not in the union of AutSup(G), ACSup(G), and Sup∗(G).

(1, 1)

C3 × 1 1× C4

G

The set of superclasses for the normal supercharacter theory generated by A is

{(1, 1), {(g, 1), (g2, 1)}, {(1, h), (1, h2), (1, h3)}, {(g, h), (g, h2), (g, h3), (g2, h), (g2, h2), (g2, h3)}}.

Let (X ,K) ∈ AutSup(G). Since Aut(G) ∼= Z2 × Z2, every orbit has at most 4 members. Note that
the members of K are the unions of the A-orbits on the classes of G. Therefore, every members of K
has at most cardinality 4. But we have a superclass with cardinality 6 in the normal supercharacter theory
generated by A. Thus, this normal supercharacter theory for G is not in AutSup(G).

Since |Aut(Q[ζ|G| : Q])| = 4, the largest superclass in K ∈ ACSup(G) has cardinality 4. Note that
the set of superclasses for the normal supercharacter theory generated by A has a superclass of cardinality
6. Therefore, the normal supercharacter theory generated by A is not in ACSup(G).

Now we show that normal supercharacter theory generated by A is not in Sup∗(G). If we choose a
subgroup of order 2 and construct the ∗-product, then there is two superclass with cardinality 1, but we
only have one superclass with cardinality 1 in the normal supercharacter theory generated by A. Let
us choose a subgroup of order 4. Then {(g, 1), (g2, 1)} is not a superclass of this supercharacter the-
ory. Now we choose a subgroup of order 3, and construct the supercharacter theory by ∗-product. Then
{(1, h), (1, h2), (1, h3)} is not a superclass of this supercharacter theory.

Therefore, the normal supercharacter theory generated by A is not in AutSup(G) ∪ ACSup(G) ∪
Sup∗(G).
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M. Aguiar, C. André, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao,

M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Mar-
berg, J.-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J.-Y. Thibon, N. Thiem, V. Venkateswaran, C. Vin-
root, N. Yan, and M. Zabrocki. Supercharacters, symmetric functions in noncommuting variables, and
related hopf algebras. Adv. Math., 229(4), 2012.
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C. André. The basic character table of the unitriangular group. J. Algebra, 241, 2001.
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