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Elliptic rook and file numbers

Michael J. Schlosser1† and Meesue Yoo1‡

1Fakultät für Mathematik, Universität Wien, Austria

Abstract. In this work, we construct elliptic analogues of the rook numbers and file numbers by attaching elliptic
weights to the cells in a board. We show that our elliptic rook and file numbers satisfy elliptic extensions of corre-
sponding factorization theorems which in the classical case were established by Goldman, Joichi and White and by
Garsia and Remmel in the file number case. This factorization theorem can be used to define elliptic analogues of
various kinds of Stirling numbers of the first and second kind as well as Abel numbers. We also give analogous results
for matchings of graphs, elliptically extending the result of Haglund and Remmel.

Résumé. Dans cet article nous construisons des analogues elliptiques des nombres de tour (rook numbers) et des
nombres de file (file numbers), en attachant des poids elliptiques aux cases d’un damier. Nous montrons que nos
nombres elliptiques de tour et de file satisfont des extensions elliptiques des théorèmes de factorisation correspondants
établis dans le cas classique par Goldman, Joichi et White, et par Garsia et Remmel dans le cas des nombres de file. Ce
théorème de factorisation peut être utilisé pour définir des analogues elliptiques de différentes sortes des nombres de
Stirling de première et de deuxième espèces, et des nombres d’Abel. Nous donnons également des résultats analogues
pour les appariements de graphes, en étendant elliptiquement le résultat de Haglund et Remmel.
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1 Introduction to rook theory
The theory of rook numbers was introduced by Kaplansky and Riordan [KR46] in 1946 and since then it
has been further studied and developed by many people. We start with reviewing the q-analogue of the
rook theory developed by Garsia and Remmel [GR86] and the j-attacking model of Remmel and Wachs
[RW04], then extend it to the elliptic case. This is an extended abstract of [SY].

Let N denote the set of positive integers. We consider N× N grid and label the columns with 1, 2, . . .
from left to right and also the rows from bottom to top. Let (i, j) denote the cell in the column i and row
j in N× N grid. A finite subset of N× N grid shall be called a board.

For a given sequence of nonnegative integers (b1, . . . , bn), we let B(b1, . . . , bn) denote the set of cells

B(b1, . . . , bn) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ bi}.

If a boardB can be represented by the setB(b1, . . . , bn) for some bi’s, then the boardB is called a skyline
board. Furthermore, if those bi’s are nondecreasing, then the board B = B(b1, . . . , bn) is called a Ferrers
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board. Given a board B, we say that we place k nonattacking rooks in B to mean that we choose a k
element subset of B such that no two cells have a common coordinate. That is, no two rooks lie in the
same row or column. Let Nk(B) denote the set of nonattacking rook placements of k rooks in B. Then
the k-th rook number rk(B) is defined to be rk(B) = |Nk(B)|.

To define the q-analogue of rk(B), we consider a Ferrers board B = B(b1, . . . , bn), with 0 ≤ b1 ≤
· · · ≤ bn. Given a k rook placement P ∈ Nk(B), we define a rook cancellation. Namely, a rook cancels
all the cells to the right in the same row and all the cells below it in the same column. Given a placement
P , let uB(P ) denote the number of cells in B − P which are uncancelled by any rooks in P . Garsia and
Remmel [GR86] defined the q-analogue of the k-th rook number by

rk(q;B) =
∑

P∈Nk(B)

quB(P )

and proved the q-analogue of the product formula of Goldman, Joichi and White [GJW75]

n∏
i=1

[z + bi − i+ 1]q =

n∑
k=0

rn−k(q;B) [z]q ↓k, (1.1)

where [n]q =
1−qn
1−q and [n]q ↓k= [n]q[n− 1]q · · · [n− k + 1]q .

Remmel and Wachs [RW04] considered more generalized case by introducing the j-attacking model.
For a fixed integer j ≥ 1, we say that a Ferrers board B(b1, . . . , bn) is a j-attacking board if for all
1 ≤ i < n, bi 6= 0 implies bi+1 ≥ bi + j− 1. Suppose that B(b1, . . . , bn) is a j-attacking board and P is
a placement of rooks in B(b1, . . . , bn) which has at most one rook in each column of B(b1, . . . , bn). For
any individual rook r ∈ P , we say that r j-attacks a cell c ∈ B(b1, . . . , bn) if c lies in a column which is
strictly to the right of the column of r and c lies in the first j rows which are weakly above the row of r
and which are not j-attacked by any rook which lies in a column that is strictly to the left of r. Figure 1
shows an example of j-attack when j = 2. The cells which are attacked by the rook ri are denoted by i
in the cell. Let a rook r in B(b1, . . . , bn) cancel the cells below it and the cells which are attacked by r.
Given a j-attacking board, we let N j

k(B) be the set of all placements P of k j-nonattacking rooks in B.

r11 1 1 1 1
1 1 1 1 1

r2 2 2 2

2 2 2

r3 3
3

Fig. 1: j = 2, B = B(1, 2, 3, 5, 7, 8, 9).

LetB = B(b1, . . . , bn) be a j-attacking board. Then for any placement P ∈ N j
k(B), denote the number

of uncancelled cells in B − P by ujB(P ). Then define the q-rook number of B by

rjk(q;B) =
∑

P∈N j
k(B)

qu
j
B(P ).
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Remmel and Wachs [RW04] proved the following product formula

n∏
i=1

[z + bi − j(i− 1)]q =

n∑
k=0

rjn−k(q;B)[z]q ↓k,j, (1.2)

where [z]q ↓0,j= 1 and for k > 0, [z]q ↓k,j= [z]q[z − j]q · · · [z − (k − 1)j]q . Note that we recover the
product formula of Garsia and Remmel in the case j = 1. In this work, we establish an elliptic analogue
of the product formula (1.2).

2 Elliptic Analogues
A function is called elliptic if it is meromorphic and doubly periodic. Define a modified Jacobi theta
function with argument x and nome p by

θ(x; p) :=
∏
j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) =

m∏
k=1

θ(xk; p),

where x, x1, . . . , xm 6= 0, |p| < 1. Further, we define the theta shifted factorial by

(a; q, p)n =


∏n−1
k=0 θ(aq

k; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1
k=0 θ(aqn+k; p), n = −1,−2, . . . ,

and (a1, a2, . . . , am; q, p)n =
∏m
k=1(ak; q, p)n, for compact notation. For p = 0 we have θ(x; 0) = 1−x

and hence, (a; q, 0)n = (a; q)n is a q-shifted factorial in base q. Refer to [GR04] for further details. The
parameters q and p in (a; q, p)n are called the base and nome, respectively. One of the properties that
modified Jacobi theta functions satisfy is called the addition formula

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) = u

y
θ(yv, y/v, xu, x/u; p),

which is essential in the theory of elliptic hypergeometric series.
Inspired by earlier work of the first author regarding weighted lattice paths and elliptic binomial co-

efficients [Sch07, Sch], we define the elliptic weights wa,b;q,p(k) and Wa,b;q,p(k), called small and big
weights, depending on two independent parameters a and b, base q, nome p, and integer k by

wa,b;q,p(k) =
θ(aq2k+1, bqk, aqk−2/b; p)

θ(aq2k−1, bqk+2, aqk/b; p)
q, (2.1a)

Wa,b;q,p(k) =
θ(aq1+2k, bq, bq2, aq−1/b, a/b; p)

θ(aq, bqk+1, bqk+2, aqk−1/b, aqk/b; p)
qk, (2.1b)

respectively. Observe that if k is a positive integer, Equations (2.1a) and (2.1b) imply that Wa,b;q,p(k) =∏k
j=1 wa,b;q,p(j). Also, if we let p → 0, a → 0 and b → 0 in this order (or p → 0, b → 0 and a → ∞),

then we recover the original q-weights w0,0;q,0(k) = q and W0,0;q,0(k) = qk.
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Remark 2.1 The small weight wa,b;q,p(k) (and so the big one) is indeed elliptic in its parameters, i.e.,
totally elliptic. If we write q = e2πiσ , p = e2πiτ , a = qα and b = qβ with complex values σ, τ , α, β and
k, then the small weight wa,b;q,p(k) is periodic in α with period σ−1. A simple computation further shows
that wa,b;q,p(k) is also periodic in α with period τσ−1. The same applies to wa,b;q,p(k) as a function in
β (or k) with the same two periods σ−1 and τσ−1.

Now we define an elliptic number [z]a,b;q,p by

[z]a,b;q,p =
θ(qz, aqz, bq2, a/b; p)

θ(q, aq, bqz+1, aqz−1/b; p)
. (2.2)

Using the addition formula for theta functions, it is not difficult to verify that the elliptic numbers satisfy

[z]a,b;q,p = [z − 1]a,b;q,p +Wa,b;q,p(z − 1).

We remark that in [Sch], the first author defined the elliptic binomial coefficients[
n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
(2.3)

and provided a combinatorial interpretation in terms of weighted lattice paths in Z2. More precisely, (2.3)
is the area generating function for paths starting from (0, 0) and ending in (k, n − k) using north and
east steps only, when the weight of each cell, with (s, t) being the coordinate of north-east corner, below
the path is defined to be waqs−1,bq2s−2;q,p(t). The elliptic number [n]a,b;q,p is nothing but a short-hand

notation for
[
n
1

]
a,b;q,p

, the weighted enumeration of all paths starting from (0, 0) and ending in (1, n−1).

Now we construct an elliptic analogue of the q-rook theory. Given a j-attacking boardB = B(b1, . . . , bn)
and a placement P ∈ N j

k(B), let U j
B(P ) be the set of uncancelled cells in B − P . We define the elliptic

analogue of the k-th rook number of B by

rjk(a, b; q, p;B) =
∑

P∈N j
k(B)

wtj(P ),

where
wtj(P ) =

∏
(s,t)∈Uj

B(P )

wa,b;q,p(j(s− 1) + 1− t− jr(s,t)(P )),

and r(s,t)(P ) is the number of rooks in P which are in the north-west region of (s, t).

Theorem 2.2 Let B = B(b1, . . . , bn) be a j-attacking board. Then we have

n∏
s=1

[z + bs − j(s− 1)]aq2(j(s−1)−bs),bqj(s−1)−bs ;q,p

=

n∑
k=0

rjn−k(a, b; q, p;B)

k∏
t=1

[z − j(t− 1)]aq2j(t−1),bqj(t−1);q,p. (2.4)
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Let rk(a, b; q, p;B) denote r1k(a, b; q, p;B) in the case when j = 1. Then Theorem 2.2 gives an elliptic
analogue of the product formula of Garsia and Remmel (1.1)

n∏
s=1

[z+ bs− s+1]aq2(s−1−bs),bqs−1−bs ;q,p =

n∑
k=0

rn−k(a, b; q, p;B)

k∏
t=1

[z− t+1]aq2(t−1),bqt−1;q,p. (2.5)

Proof: It suffices to prove the theorem for nonnegative integer values of z ≥ jn. We consider the extended
board, denoted by Bz , by attaching z rows of width n below the board B. We consider nonattacking
placements of n rooks in Bz and compute the sum∑

P∈N j
n(Bz)

wtj(P ),

where
wtj(P ) =

∏
(s,t)∈Uj

Bz
(P )

wa,b;q,p(j(s− 1) + 1− t− jr(s,t)(P )),

in two different ways to derive (2.4). We omit the details. 2

2.1 Elliptic analogue of generalized Stirling numbers of the second kind
The generalized (p, q)-Stirling numbers of the second kind S̃i,j

n,k(p, q) were introduced by Remmel and
Wachs in [RW04], (here we use “p” to differentiate the notation from the nome p in the elliptic functions),
which are defined by

S̃i,j
n+1,k(p, q) = qi+(k−1)jS̃i,j

n,k−1(p, q) + p−(n+1)j[kj+ i]p,qS̃
i,j
n,k(p, q), (2.6)

with S̃i,j
0,0(p, q) = 1 and S̃i,j

n,k(p, q) = 0 if k < 0 or k > n. Moreover, they satisfy

[z + i]np,q =

n∑
k=0

S̃i,j
n,k(p, q)p

z(n−k)+(n−k+1
2 )[z]p,q ↓k,j .

Note that we recover the original Stirling numbers of the second kind when i = 0, j = 1, p = 1 and
q = 1, and the q-analogue in the case i = 0, j = 1 and p = 1. Here, we set p = 1 and use the notation
S̃i,j
n,k(q) = S̃i,j

n,k(1, q) and Si,j
n,k(q) = Si,j

n,k(1, q) for S̃i,j
n,k(q) = qki+(

k
2)jSi,j

n,k(q).
Let Bi,j,n = B(i, i+ j, i+ 2j, . . . , i+ (n− 1)j). In [RW04], Remmel and Wachs showed that

S̃i,j
n,k(q) = rjn−k(q;Bi,j,n).

We use Bi,j,n in (2.4) to define an elliptic analogue of S̃i,j
n,k(q). For Bi,j,n, the product formula becomes

([z + i]aq−2i,bq−i;q,p)
n =

n∑
k=0

rjn−k(a, b; q, p;Bi,j,n)

k∏
t=1

[z − j(t− 1)]aq2j(t−1),bqj(t−1);q,p. (2.7)
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If we define S̃i,j
n,k(a, b; q, p) = rjn−k(a, b; q, p;Bi,j,n), then up to whether there is a rook or not in the last

column of Bi,j,n, we get the following recursion

S̃i,j
n+1,k(a, b; q, p) =Waq−2i,bq−i;q,p(i+ (k− 1)j)S̃i,j

n,k−1(a, b; q, p) + [i+ kj]aq−2i,bq−i;q,pS̃
i,j
n,k(a, b; q, p).

In [RW04], they develop combinatorial interpretation for Si,j
n,k(q) in terms of permutation statistics, col-

ored partitions and restricted growth functions. We can modify their q-weight function to elliptic function
to give a combinatorial interpretation for Si,j

n,k(a, b; q, p) where

S̃i,j
n,k(a, b; q, p) =

 k∏
j=1

Waq−2i,bq−i;q,p(i+ (j − 1)j)

Si,j
n,k(a, b; q, p).

2.2 Elliptic r-restricted Stirling numbers of the second kind
The r-restricted Stirling numbers of the second kind, which we denote by S(r)(n, k), are defined in
[Bro84], for all positive integer r, by the number of set partitions on [n] into k blocks such that the first
r numbers 1, 2, . . . , r are in different blocks. Note that the case r = 1 (or r = 0) gives the usual Stirling
numbers of the second kind. These numbers admit a rook theoretic interpretation if we consider the board
St(r)n = B(0, . . . , 0, r, r + 1, . . . , n − 1) of n columns, with the first r columns being empty. A rook
placed in the (i, j) cell implies that the elements i and j are in the same block, and the numbers which
have not been put in any blocks by rooks compose single element blocks. Then it is not difficult to see
that each configuration of n− k nonattacking rooks on St(r)n can be associated to a partition of [n] into k
blocks such that each of the first r numbers 1, 2 . . . , r is in a different block, and vice versa.

We can use the board St(r)n in (2.5) to define an elliptic analogue of S(r)(n, k). For bi = 0 for i =
1, . . . , r and bi = i− 1, for i = r + 1, . . . , n, (2.5) becomes

([z]a,b;q,p)
n−r

r∏
i=1

[z− i+1]aq2(i−1),bqi−1;q,p =

n∑
k=0

rn−k(a, b; q, p;St
(r)
n )

k∏
j=1

[z− j+1]aq2(j−1),bqj−1;q,p.

Let S(r)a,b;q,p(n, k) denote rn−k(a, b; q, p;St(r)n ) to be the elliptic r-restricted Stirling numbers of the second
kind. By considering whether the last column contains a rook or not, we get the recursion

S(r)a,b;q,p(n+ 1, k) =Wa,b;q,p(k − 1)S(r)a,b;q,p(n, k − 1) + [k]a,b;q,pS(r)a,b;q,p(n, k).

This recursion can characterize S(r)a,b;q,p(n, k) with the initial conditions S(r)a,b;q,p(n, k) = 0 for k < r − 1

or k > n, and S(r)a,b;q,p(r − 1, r − 1) = 1.

3 Elliptic file numbers
In this section, we consider an elliptic analogue of file numbers introduced by Garsia and Remmel.

Given a board B ⊂ [n] × N, let Fk(B) be the set of placements Q of k rooks in B such that no two
rooks in Q lie in the same column. We refer to such a Q as a file placement of k rooks in B. Thus in
a file placement Q, we do allow the possibility that two rooks lie in the same row. Given a placement
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Q ∈ Fk(B), we let each rook in Q cancel all the cells below it in B. Let uB(Q) be the number of cells in
B −Q which are not cancelled by any rook in Q. Then the q-file numbers are defined by

fk(q;B) =
∑

Q∈Fk(B)

quB(Q). (3.1)

Garsia and Remmel proved that for any skyline board B = B(c1, . . . , cn), the q-file numbers satisfy

n∏
i=1

[z + ci]q =

n∑
k=0

fn−k(q;B)([z]q)
k. (3.2)

We can define an elliptic analogue of the q-file numbers by assuming the same rook cancellation as in the
q-case and by assigning elliptic weights to the uncancelled cells.

Given a skyline board B = B(c1, . . . , cn), we define the elliptic analogue of the k-th file number by

fk(a, b; q, p;B) =
∑

Q∈Fk(B)

wtf (Q), (3.3)

where
wtf (Q) =

∏
(i,j)∈UB(Q)

wa,b;q,p(1− j),

and UB(Q) denotes the set of uncancelled cells in B −Q by any rooks in Q.

Theorem 3.1 For any skyline board B = B(c1, . . . , cn), we have

n∏
i=1

[z + ci]aq−2ci ,bq−ci ;q,p =

n∑
k=0

fn−k(a, b; q, p;B)([z]a,b;q,p)
k. (3.4)

Proof: We consider the extended boardBz by attaching an [n]×[z] board below the boardB and consider
the n-file placements Fn(Bz) in Bz . Then (3.4) can be proved by computing the sum∑

Q∈Fn(Bz)

wtf (Q) (3.5)

in two ways. The left-hand side of (3.4) computes the above sum by placing rooks column by column.
Since the elliptic weight used to define wtf (Q) does not depend on the column coordinate of the uncan-
celled cells, the weight sum in (3.5) is the product of the weight sum coming from the possible placements
in each column, which is exactly the left-hand side of (3.4). The right-hand side computes (3.5) by con-
sidering the file placements in B and in the extended part separately. 2

3.1 Elliptic r-restricted Stirling numbers of the first kind
The r-restricted (signless) Stirling numbers of the first kind, denoted by c(r)(n, k), are defined, for all
positive r, by the number of permutations of the set {1, . . . , n} having k cycles, such that the numbers
1, 2, . . . , r are in distinct cycles. For r = 1 (or r = 0) they reduce to the usual Stirling numbers of the
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first kind. In [Bro84], these Stirling numbers are treated in details and it is shown that c(r)(n, k) have the
generating function

n∑
k=0

c(r)(n, k)zk =

{
zr(z + r)(z + r + 1) · · · (z + n− 1), n ≥ r ≥ 0,
0, otherwise. (3.6)

We can obtain this generating function from (3.2) in the case q → 1 by considering the board St(r)n =
B(c1, . . . , cn) with ci = 0 for i = 1, . . . , r and ci = i − 1, for i = r + 1, . . . , n. Thus we can identify
c(r)(n, k) with fn−k(1;St(r)n ). We can even construct a bijection between file placements of n− k rooks
in St(r)n and permutations of n numbers with k cycles, such that 1, 2, . . . , r are in distinct cycles.

We can define an elliptic analogue of the r-restricted Stirling number of the first kind by using the board
St(r)n in (3.4). Then the generating function would be

([z]a,b;q,p)
r
n−r∏
i=1

[z + r + i− 1]aq2(1−i−r),bq1−i−r;q,p =

n∑
k=0

fn−k(a, b; q, p;St
(r)
n )([z]a,b;q,p)

k. (3.7)

Let c(r)a,b;q,p(n, k) denote fn−k(a, b; q, p;St(r)n ). By distinguishing whether there is a rook or not in the last

column, we get the recurrence relation of c(r)a,b;q,p(n, k), namely

c
(r)
a,b;q,p(n+ 1, k) = [n]aq−2n,bq−n;q,pc

(r)
a,b;q,p(n, k) +Waq−2n,bq−n;q,p(n)c

(r)
a,b;q,p(n, k − 1).

This recurrence relation can be used to characterize c
(r)
a,b;q,p(n, k) with the initial conditions

c
(r)
a,b;q,p(n, k) = 0 for k < r − 1 or k > n, and c

(r)
a,b;q,p(r − 1, r − 1) = 1.

3.2 Abel boards and weighted forests
Let An denote the Abel board, the [n − 1] × [n] board with column heights (0, n, . . . , n). For the board
An, the product formula involving the file numbers (3.2), when q → 1, becomes

z(z + n)n−1 =

n∑
k=0

fn−k(1;An)z
k.

These polynomials are a special case of the general Abel polynomials z(z + αn)n−1. The coefficient
fn−k(1;An) = tn,k =

(
n−1
k−1
)
nn−k counts the number of labeled forests on n vertices composed of k

rooted trees. Goldman and Haglund explained this equality bijectively in [GH00] and we have established
our own bijection as well. For the Abel board An the product formula in Theorem 3.1 becomes

[z]a,b;q,p([z + n]aq−2n,bq−n;q,p)
n−1 =

n∑
k=0

fn−k(a, b; q, p;An)([z]a,b;q,p)
k. (3.8)

We can interpret the coefficient fn−k(a, b; q, p;An) as the weighted sum of labeled forests on n vertices
composed of k rooted trees, by assigning elliptic weights on the branches and vertices of the rooted trees
in the process of constructing the bijection. The coefficients in (3.8) have a nice closed form

fn−k(a, b; q, p;An) =

(
n− 1

k − 1

)(
Waq−2n,bq−n;q,p(n)

)k−1 (
[n]aq−2n,bq−n;q,p

)n−k
, (3.9)
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which can be proved by considering the file placements in An.
We can furthermore consider the case of r-restricted Abel boards A(r)

n = B(0, . . . , 0, n, . . . , n) which
consists of r columns of height zero and n − r columns of height n. The file number for this board
fn−k(1;A

(r)
n ) equals

(
n−r
k−r
)
nn−k which counts the number of labeled forests on n vertices composed of

k rooted trees such that the numbers 1, 2, . . . , r are in distinct trees and the r− 1 numbers 2, . . . , r are the
roots. For the r-restricted Abel board A

(r)
n the product formula in Theorem 3.1 becomes

([z]a,b;q,p)
r([z + n]aq−2n,bq−n;q,p)

n−r =

n∑
k=r−1

fn−k(a, b; q, p;A
(r)
n )([z]a,b;q,p)

k. (3.10)

The coefficients in (3.10) have a nice closed form

fn−k(a, b; q, p;A
(r)
n ) =

(
n− r
k − r

)(
Waq−2n,bq−n;q,p(n)

)k−r (
[n]aq−2n,bq−n;q,p

)n−k
. (3.11)

4 Rook theory for matchings
Haglund and Remmel [HR01] extended the rook theory by replacing permutations with perfect matchings.
Rather than [n]× [n] which corresponds to the board for permutations, consider the following board B2n

described in the left of Figure 2. Note that any rook placement P in [n] × [n] is a partial permutation
which can be extended to a placement Pσ corresponding to some permutation σ ∈ Sn. For the boardB2n,
we replace permutations by perfect matchings of the complete graph K2n on vertices 1, 2, . . . , 2n. That
is, for each perfect matching M of K2n consisting of n pairwise vertex disjoint edges in K2n, we let

PM = {(i, j) | i < j and {i, j} ∈M}

where (i, j) denotes the cell in row i and column j of B2n according to the labeling of rows and columns
pictured in Fig. 2. We now define a rook placement to be a subset of some PM for a perfect matching
M of K2n. Given a board B ⊆ B2n, we letMk(B) denote the set of k element rook placements in B.
The analogue of a skyline board in this setting is a board B(a1, a2, . . . , a2n−1) = {(i, i + j) | 1 ≤ i ≤
2n − 1, 1 ≤ j ≤ ai}. It is called a shifted Ferrers board if 2n − 1 ≥ a1 ≥ a2 ≥ · · · ≥ a2n−1 ≥ 0 and
the nonzero entries of ai’s are strictly decreasing. A rook in (i, j) with i < j in a rook placement cancels
all cells (i, s) in B2n with i < s < j and all cells (t, j) and (t, i) with t < i. The picture in the right-hand
side in Figure 2 shows an example of rook cancellation.

Given a shifted Ferrers board B = B(a1, . . . , a2n−1) ⊆ B2n, define

mk(q;B) =
∑

P∈Mk(B)

quB(P ),

where uB(P ) is the number of cells in B − P which are not cancelled by any rook in P . In this setting,
Haglund and Remmel [HR01] proved the product formula

2n−1∏
i=1

[z + a2n−i − 2i+ 2]q =

n∑
k=0

mk(q;B)[z]↓↓2n−1−k (4.1)

where [z]q ↓↓k= [z]q[z − 2]q · · · [z − 2k + 2]q .
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2 3 · · · 2n-1 2n
1

2

·
·
·

2n-2
2n-1

2 3 4 5 6 7 8

1

2

3

4

5

6

7

•
•
•

••

•
•
•

Fig. 2: B2n and the rook cancellation by a rook in (4, 7)

We generalize the board B2n and construct an elliptic analogue of the product formula which includes
an elliptic extension of (4.1). Let l = (l1, . . . , lN ) be a fixed N -dimensional vector of positive integers.
Define Lj =

∑j
s=1 ls, so that lj = Lj − Lj−1, for 1 ≤ j ≤ N with L0 = 0. The l-shifted board,

denoted by BlN , is an extension of B2n with N rows and LN = l1 + · · · + lN columns as described
in Figure 3. A rook placed in Bl

N , say r ∈ (i, j), attacks the cells in the same row, the same column,

1

lN+1

lN+lN−1+1
·
·

lN+. . . +l3+1
lN+. . . +l3+l2+1

︸ ︷︷ ︸
lN ︸ ︷︷ ︸

lN−1

2 3 · · ·

︸ ︷︷ ︸
l2 ︸ ︷︷ ︸

l1

LN+1· · ·

Fig. 3: Bl
N .

and the cells in the column i. We can interpret a rook placement in Bl
N in the following way. We

call a labeled graph of at most LN + 1 vertices from the set {1, 2, . . . , LN + 1} lazy with respect to
l = (l1, . . . , lN ) (or, an l-lazy graph, in short) if it only contains edges (i, j) for i < j when i is of the
form lN + · · ·+ lN−s+1 + 1 = LN −LN−s + 1 for s ∈ {0, 1, . . . , N − 1}. Then a k-rook placement on
Bl
N is a k-matching of Kl

LN+1, the complete l-lazy graph on LN + 1 vertices. Given a board B ⊆ Bl
N ,

we letMl
k(B) denote the set of k rook placements in B. An l-shifted skyline board is a board of the form

B(a1, a2, . . . , aN ) = {(LN − LN−i+1 + 1, LN − LN−i+1 + 1 + j) | 1 ≤ i ≤ N, 1 ≤ j ≤ ai}. It is
called an l-shifted Ferrers board if LN ≥ a1 ≥ a2 ≥ · · · ≥ aN ≥ 0 and the nonzero entries of ai satisfy
ai − ai+1 ≥ lN+1−i for 1 ≤ i ≤ N − 1. A rook in (i, j) with i < j in a rook placement cancels all cells
(i, s) in Bl

N with i < s < j and all cells (t, j) and (t, i) in Bl
N with t < i.
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Now we work out an elliptic analogue. We assume the same rook cancellation. However, for the
purpose of conveniently computing the elliptic weights of cells, we label the columns from 1 to LN , from
right to left, and label the rows from 1 to N from the bottom. When we use this labeling, we denote the
board by wBl

N and use (i, j)w to denote a cell with respect to this labeling.
Given an l-shifted Ferrers board B = B(a1, . . . , aN ) ⊆ Bl

N and a rook placement P ∈ M(l)
k (B), let

U l
B(P ) denote the set of uncancelled cells in B − P by any rooks in P . Define

wtm(P ) =
∑

(i,j)w∈U l
B(P )

wa,b;q,p
(
i+ j − 1− li − 2r(i,j)(P )− s(i,j)(P )

)
, (4.2)

where the elliptic weight wa,b;q,p(l) of an integer l is defined in (2.1a), r(i,j)(P ) is the number of rooks in
P positioned south-east of (i, j)w such that the two columns cancelled by those rooks are to the right of
the column j, and s(i,j)(P ) is the number of rooks in P which are in the south-east region of (i, j)w such
that only one cancelled column is to the right of column j. Then we have the following theorem.

Theorem 4.1 For an l-shifted Ferrers board B = B(a1, . . . , aN ) ⊆ Bl
N , define

m
(l)
k (a, b; q, p;B) =

∑
P∈Ml

k(P )

wtm(P ). (4.3)

Then we have

N∏
i=1

[z + aN−i+1 − 2i+ 2]
aq2(Li−1+i−1−aN−i+1),bqLi−1+i−1−aN−i+1 ;q,p

=

N∑
k=0

m
(l)
k (a, b; q, p;B)

N−k∏
j=1

[z − 2j + 2]
aq2(Lj−1+j−1),bqLj−1+j−1;q,p

. (4.4)

Remark 4.2 If we let N = 2n− 1 and l = (1, 1, . . . , 1), then (4.4) becomes

2n−1∏
i=1

[z + a2n−i − 2i+ 2]
aq2(2i−2−a2n−i),bq2i−2−a2n−i ;q,p

=

n∑
k=0

m
(1,1,...,1)
k (a, b; q, p;B)

2n−1−k∏
j=1

[z − 2j + 2]aq4j−4,bq2j−2;q,p (4.5)

which becomes an elliptic analogue of the product formula of Haglund and Remmel (4.1). We can derive

m(1,1,...,1)
n (a, b; q, p;B) =

∏2n−1
i=1 [a2n−i + 2n− 2i]

aq2(2i−2−a2n−i),bq2i−2−a2n−i ;q,p∏n−1
i=1 [2n− 2i]aq4i−4,bq2i−2;q,p

,

which, in the case of the full shifted Ferrers boardB = B2n = B(2n−1, 2n−2, . . . , 1), gives the elliptic
enumeration of perfect matchings on K2n

m(1,1,...,1)
n (a, b; q, p;B2n) =

∏2n−1
i=1 [2n− i]aq2i−4,bqi−2;q,p∏n−1
i=1 [2n− 2i]aq4i−4,bq2i−2;q,p

= [2n− 1]aq−2,bq−1;q,p[2n− 3]aq2,bq;q,p . . . [1]aq4n−6,bq2n−3 .
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Proof of Theorem 4.1: We extend the board Bl
N by attaching z many columns of height N to the right

of Bl
N and denote it by Bl

N,z . We consider N -rook placements in Bl
N,z and define the rook cancellation

in Bl
N,z so that each rook cancels two columns in the rows above the row containing that rook. Then (4.4)

is the result of computing the sum ∑
P∈NN (Bl

N,z)

wtm(P )

in two different ways, where wtm(P ) is the product of weights of uncancelled cells in Bl
N,z − P . We

omit the details of the proof. 2
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