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Cumulants of Jack symmetric functions and
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Abstract. Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating
series ψ(x,y,z; t, 1 + β) that might be interpreted as a continuous deformation of the rooted hypermap generating
series. They made the following conjecture: coefficients of ψ(x,y,z; t, 1+β) are polynomials in β with nonnegative
integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients
of ψ(x,y,z; t, 1 + β) are polynomials in β with rational coefficients. Until now, it was only known that they are
rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when α → 0
that may be of independent interest.

Résumé. Goulden et Jackson (1996) ont introduit, en utilisant les fonctions symétriques de Jack, une série génératrice
multivariée ψ(x,y,z; t, 1 + β) qui est une déformation continue de séries génératrices de cartes enracinées. Ils ont
fait la conjecture suivante : les coefficients de ψ(x,y,z; t, 1 + β) sont des polynômes en β avec des coefficients
entiers positifs. Nous prouvons partiellemnt cette conjecture, en établissant la polynomialité en β des coefficients de
ψ(x,y,z; t, 1+ β) (ces coefficients sont a priori des fonctions rationnelles en β). Un ingrédient clé de notre preuve,
potentiellement intéressant par ailleurs, est une propriété de factorisation forte des polynômes de Jack quand α tend
vers 0.
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This paper is an extended abstract of [2], which will be submitted elsewhere.

1 Introduction
1.1 b-conjecture and our main result

Let J (α)
λ (x) be the Jack symmetric function indexed by a partition λ in the infinite alphabet x. Let us

denote by hα(λ) and h′α(λ) the α hook-polynomials (these are combinatorial factors that appears often
in Jack polynomial theory, and that are defined in Section 2.1). We also use P for the set of all integer
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partitions and |λ| for the size of a partition λ. In their article [6], Goulden and Jackson defined coefficients
hτµ,ν(α− 1) by the following formal series identity:

log

(∑
λ∈P

J
(α)
λ (x) J

(α)
λ (y) J

(α)
λ (z) t|λ|

hα(τ)h′α(τ)

)
=
∑
n≥1

tn

αn

 ∑
µ,ν,τ`n

hτµ,ν(α− 1) pµ(x) pν(y) pτ (z)

 , (1)

where µ, ν, τ ` n means that µ, ν and τ are three partitions of n and pµ is the power-sum symmetric
function associated with µ.

This rather involved definition is motivated by the following combinatorial interpretations for particular
values of α; see [6, Section 1.1] and references therein.
• In the case α = 1, the quantity hτµ,ν(0) enumerates connected hypergraphs embedded into oriented

surfaces with vertex-, edge- and face-degree distributions given by µ, ν and τ .
• In the case α = 2, the quantity hτµ,ν(1) enumerates connected hypergraphs embedded into non-oriented

surfaces with the same degree conditions.
Connected hypergraphs embedded into surfaces are usually called maps and are a classical topic in enu-
merative combinatorics related to the computation of matrix integrals or the study of moduli spaces of
curves, as explained in detail in the book [10]. The logarithm in Eq. (1) is present because we only want
to count connected objects.

Note that hτµ,ν(α − 1) is a priori a quantity depending on parameter α, and describing it as a quantity
depending on a different parameter β := α − 1 might seem be artificial. However, it turned out that
this shift seems to be a right one for finding a combinatorial interpretation of hτµ,ν(β), as suggested by
Goulden and Jackson [6] in the following conjecture.

Conjecture 1.1 (b-conjecture) For all partitions τ, µ, ν ` n ≥ 1, the quantity hτµ,ν(β) is a polynomial
in β with nonnegative, integer coefficients. Moreover, there exists a statistics η on maps such that

hτµ,ν(β) =
∑
M

βη(M), (2)

where the summation index runs over all rooted hypermapsM vertex-, edge- and face-degree distributions
given by µ, ν and τ , and η(M) is a nonnegative integer equals to 0 if and only ifM is orientable.

This conjecture is still open. Some constructions for a candidate statistics η have been given, establish-
ing particular cases of the conjecture [1, 9, 7]. However, there is not much known about the structure of
hτµ,ν(β) for arbitrary partitions τ, µ, ν ` n. Strictly from the construction it is only known to be rational
function in β with rational coefficients. It follows from recent results of us [3, Appendix B] that the only
possible pole of this rational function is at β = −1 (i.e. α = 0); see the long version [2] for details. Our
main result in this paper is that there is no pole at β = −1 either, completing the proof of the polyno-
miality of hτµ,ν(β) for all partitions τ, µ, ν ` n ≥ 1. This gives more evidence towards Conjecture 1.1,
and we believe that it opens some new possible ways to prove it in full generality (such as polynomial
interpolation, for instance).

Theorem 1.2 For all partitions τ, µ, ν ` n ≥ 1, the quantity hτµ,ν(β) has no pole in β = −1 and hence
is a polynomial in β (with rational coefficients).

Unfortunately, the nonnegativity and the integrality of the coefficients seem out of reach with our ap-
proach.
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1.2 Strong factorization of Jack polynomials
A key step in our proof of Theorem 1.2 is a strong factorization of Jack polynomials when α tends to
zero. Unfortunately it is hard to explain at this stage how this result enters the proof of our main result.
Nevertheless, since we think that it could also be interesting in itself, let us present this intermediate result
in the introduction.

To state it let us introduce a few notations. If λ and µ are partitions, we define λ⊕µ := (λ1+µ1, λ2+
µ2, . . . ) their entry-wise sum. If λ1, · · · , λr are partitions and I a subset of [r] := {1, · · · , r}, then we
denote λI :=

⊕
i∈I λ

i.

Theorem 1.3 Let r ≥ 2 be an integer and λ1, · · · , λr be partitions. Then∏
I⊂[r]

(
J
(α)

λI

)(−1)|I|
= 1 +O(αr−1). (3)

For a formal definition of O(αr) in this context, we refer the reader to Definition 3.1.

For r = 2, the theorem asserts that J (α)
λ1⊕λ2 = J

(α)
λ1 J

(α)
λ2 (1 + O(α)), i.e. that J (α)

λ1⊕λ2 factorizes when α
tends to 0. This follows from the explicit expression of Jack polynomials for α = 0 [15, Proposition 7.6].
For bigger values of r, the theorem is much more involved and can be interpreted as a strong factorization
property for Jack polynomials.

The theorem has an equivalent form that uses the notion of cumulants of Jack polynomials — see
Section 3 for comments on the terminology. For partitions λ1, · · · , λr, we denote

κJ(λ1, · · · , λr) =
∑

π∈P([r])

(−1)#(π)−1(#(π)− 1)!
∏
B∈π

J
(α)

λB
.

Here, the sum is taken over set-partitions π of [r] and #(π) is the number of blocks of a set-partition π.
For example

κJ(λ1, λ2) = J
(α)
λ1⊕λ2 − J (α)

λ1 J
(α)
λ2 ,

κJ(λ1, λ2, λ3) = J
(α)
λ1⊕λ2⊕λ3 − J (α)

λ1 J
(α)
λ2⊕λ3 − J (α)

λ2 J
(α)
λ1⊕λ3 − J (α)

λ3 J
(α)
λ1⊕λ2 + 2J

(α)
λ1 J

(α)
λ2 J

(α)
λ3 .

We then have the following estimate for cumulants of Jack polynomials

Theorem 1.4 Let r ≥ 2 be an integer and λ1, · · · , λr be partitions. Then

κJ(λ1, · · · , λr) = O(αr−1). (4)

Theorem 1.4 is in fact equivalent to Theorem 1.3, as shown (in a more general setting) by Proposition 3.3
(we need here the fact that J (α)

λ has a non-zero limit when α tends to 0 [15, Proposition 7.6]; this ensures

that J (α)
λ = O(1) and

(
J
(α)
λ

)−1
= O(1)). We prove Theorem 1.4 in Section 4.

A similar strong factorization property conjecturally holds for Macdonald polynomials, see [2].

1.3 Related problems
We finish this section by mentioning two similar problems. First, a very similar conjecture to Conjecture
1.1 without taking a logarithm in Eq. (1) was also stated by Goulden and Jackson [6]. The latter is
conjecturally a multivariate generating series of matchings, where the exponent of β is some combinatorial
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integer-valued statistics. The conjecture is still open, while some special cases have been solved by
Goulden and Jackson in their original article [6] and recently by Kanunnikov and Vassilieva [7]. The
polynomiality was proven by the authors of this paper in [3] and is used to reduce the proof of Theorem
1.2 to checking that there is no singularity in α = 0.

A second related problem is the investigation of Jack characters, that is suitably normalized coefficients
of power-sum symmetric function expansion of Jack polynomials. In a series of paper [11, 12], Lassalle
made some polynomiality and positivity conjectures suggesting that a combinatorial description of these
objects might exist. Although these conjectures are not fully resolved, it was proven by us together with
Śniady [4] that in some special cases indeed, such combinatorial setup exists. Moreover, as in Conjecture
1.1, these special cases involve hypermaps and some statistics that “measures their non-orientability”.

We cannot resist to state that there must be a deep connection between all these problems, and under-
standing it would be of great interest.

2 Preliminaries
2.1 Partitions
We call λ := (λ1, λ2, . . . , λl) a partition of n if it is a weakly decreasing sequence of positive integers
such that λ1 + λ2 + · · · + λl = n. Then n is called the size of λ while l is its length. As usual, we use
the notation λ ` n, or |λ| = n, and `(λ) = l. We denote the set of partitions of n by Yn, which we
endow with the dominance order defined in the following way: λ ≤ µ ⇐⇒

∑
i≤j λi ≤

∑
i≤j µi for

any positive integer j. We also denote λt the conjugate partition of λ. As usual, we identify partition with
their Young diagrams (using French convention). For any box � := (i, j) ∈ λ from Young diagram we
define its arm-length by a(�) := λj − i and its leg-length by `(�) := λti − j (the same definitions as in
[14, Chapter I]), see Figure 1.

a(i, j)

`(i, j)

Fig. 1: Arm and leg length of
boxes in Young diagrams.

There are many combinatorial quantities associated with partitions
that we will use extensively through this paper. First, set

zλ :=
∏
i≥1

imi(λ)mi(λ)!, (5)

wheremi(λ) denotes the number of parts of λ equal to i. We also define
α-hook polynomials hα(λ) and h′α(λ) by the following equations:

hα(λ) :=
∏
�∈λ

(αa(�) + `(�) + 1) , (6)

h′α(λ) :=
∏
�∈λ

(αa(�) + `(�) + α) . (7)

Finally, we consider a partition binomial given by b(λ) :=
∑
i

(
λi
2

)
.

2.2 Jack polynomials and Laplace-Beltrami operator
Jack polynomials are a classical one-parameter deformation of Schur symmetric functions that can be
defined in several different ways. To our purpose, we will use a characterization via Laplace-Beltrami
operators, suggested by Stanley in his seminal paper [15] (note p. 85). Since this is now a well-established
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theory, results of this section are given without proofs but with explicit references to the literature (mostly
to Stanley’s paper [15]).

First, consider the vector space SymN of symmetric polynomials in N variables over Q(α). The
following differential operators act on this space:

D1 =
∑
i≤N

∑
i6=j

x2i
xi − xj

∂

∂xi
, D2 =

1

2

∑
i≤N

x2i
∂2

∂x2i
.

We define Laplace–Beltrami operator Dα as Dα = D1 + αD2.

Proposition 2.1 There exists a unique family J (α)
λ (indexed by partitions λ of length at mostN ) in SymN

that satisfy:
(C1) J (α)

λ (x1, . . . , xN ) is an eigenvector ofDα with eigenvalue ev(λ) = (αb(λ)− b(λt) + (N − 1)|λ|);
(C2) the monomial expansion of J (α)

λ is given by

J
(α)
λ = hα(λ)mλ +

∑
ν<λ

aλνmν , where aλν ∈ Q(α).

(Recall that we use the dominance order on partitions.)
These polynomials are called Jack polynomials.

This is not the definition of Jack polynomials used by Stanley, but the fact that Jack polynomials indeed
satisfy these properties can be found in [15]; see Theorem 3.1 and Theorem 5.6. The uniqueness is an
easy linear algebra exercise when one has observed that ev(λ) = ev(µ) and |λ| = |µ| imply that λ and
µ are either equal or incomparable for the dominance order [15, Lemma 3.2]. A deep result of Knop and
Sahi [8] asserts that aλν lies in fact in N[α]. In particular, Jack polynomials depend polynomially on α.

With the definition above, the Jack polynomial J (α)
λ depends on the number N of variables. However,

it is easy to see that it satisfies the compatibility relation J (α)
λ (x1, . . . , xN , 0) = J

(α)
λ (x1, . . . , xN ) and

thus J (α)
λ can be seen as a symmetric function. In the sequel, when working with differential operators,

we sometimes confuse a symmetric function f with its restriction f(x1, . . . , xN , 0, 0, . . . ) to N variables.
Stanley also established the following specialization formula at α = 0: J (0)

λ = (
∏
i λ

t
i!) eλt , where eλ

is the elementary symmetric function associated with λ [15, Proposition 7.6]. A key point in his proof,
that will be also important in the present paper, is the following proposition.

Proposition 2.2 For any partition λ ` n,
1. the elementary symmetric function eλ is an eigenvector of the operator D1:

D1eλ = ((N − 1)|λ| − b(λ)) eλ;

2. for any partition µ ` n such that b(λ) = b(µ) either λ = µ or λ � µ in the dominance order.

Here is an easy corollary, whose proof is left as an exercise to the reader.

Corollary 2.3 Let f ∈ Sym be a homogeneous symmetric function with an expansion in the monomial
basis of the following form:

f =
∑
µ<λ

dµmµ

for some partition λ. If, for any number N of variables, D1f = ((N − 1)|λ| − b(λt)) f then f = 0.
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3 Strong factorization of hook products
LetR be a ring and α a formal parameter. DenoteR(α) the field of rational function in α with coefficients
in R. Throughout this paper, α is the Jack parameter.

Definition 3.1 We use the following notation: for r ∈ R(α) and an integer k, we write r = O(αk) if the
rational function r · α−k has no pole in 0.

3.1 Small cumulant and strong factorization property
Recall that a set partition of a set S is a (non-ordered) family of non-empty disjoint subsets of S (called
blocks of the partition), whose union is S. Denote P(S) the set of set partitions of a given set S.

Definition 3.2 Let (uI)I⊆J be a family of elements in R(α), indexed by subsets of a finite set J . Then its
partial cumulant is defined as follows. For any non-empty subset H of J , set

κH(u) =
∑

π∈P(H)

(−1)#(π)−1(#(π)− 1)!
∏
B∈π

uB . (8)

The terminology comes from probability theory. Let J = [r], and let X1, · · · , Xr be random variables
with finite moments defined on the same probability space. If uI = E(

∏
i∈I Xi), where E denotes the

expectation of this probability space, then the quantity κ[r](u) is known as the joint (or mixed) cumulant
of the random variables X1, · · · , Xr. Even if this probabilistic interpretation of cumulants is not relevant
here, we will use several lemmas that have been discovered in a probabilistic context [5].

As above, we consider a family u = (uI)I⊆[r] of elements of R(α) indexed by subsets of [r]. We now
assume that these elements are non-zero and u∅ = 1. We then define the cumulative factorization error
terms TH(u) of the family u. For any subset H of [r] of size at least 2, set

TH(u) =
∏
G⊆H

u
(−1)|H|−|G|
G − 1. (9)

Proposition 3.3 Using the notation above, the following statements are equivalent:

I. Strong factorization property: for any subset H ⊆ [r] of size at least 2, one has

TH(u) = O(α|H|−1). (10)

II. Small cumulant property: for any subset H ⊆ [r] of size at least 2, one has

κH(u) =

(∏
h∈H

uh

)
O(α|H|−1). (11)

This proposition is a reformulation of [5, Lemma 2.2]. For a proof in our context, which is an adaptation
of the proof of [5, Lemma 2.2], we refer to the full version of this article [2, Proposition 3.3].

A first consequence of this multiplicative criterion for small cumulants is the following stability result.

Corollary 3.4 Consider two families (uI)I⊆[r] and (vI)I⊆[r] with the small cumulant property. Then
their entry-wise product (uIvI)I⊆[r] and quotient (uI/vI)I⊆[r] also have the small cumulant property.

Proof: This is trivial for the strong factorization property and the small cumulant property is equivalent
to it. 2
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�

λ1

; b •

λ2

; ∗ ∗

λ3

→ b ∗ ∗ � •

λ1 + λ2 + λ3

Fig. 2: The diagram of an entry-wise sum of partitions.

3.2 Hook cumulants
To illustrate the propositions above and as a preparation for our next results, we show in this section that
families constructed from the hook polynomials (6) and (7) have the small cumulant properties.

Lemma 3.5 Fix a positive integer r and a subset K of [r]. Let C and (ci)i∈K be some elements of R(α).
Assume that C, C−1 and the ci are O(1). For a subset I of K, we define vI = C +α ·

∑
i∈I ci. Then, for

any subset H of K, we have TH(v) = O(α|H|).

This technical lemma is a reformulation of [5, Lemma 2.4] and, again, for a proof in our context, we refer
to [2, Lemma 3.5]. We recall that for any fixed sequence of partitions λ1, . . . , λr and for a subset I ⊂ [r]
we set λI :=

⊕
i∈I λ

i.

Proposition 3.6 Fix some partitions λ1, . . . , λr and, for any subset I of [r], set uI := hα(λ
I). The family

(uI) has the strong factorization, and hence, the small cumulant properties.

Proof: Clearly, it is enough to prove that T[r](u) = O(αr−1).
Fix some subset I = {i1, · · · , it} of [r] with i1 < · · · < it and observe that the Young diagram λI can

be constructed by sorting the columns of the diagrams λi1 , . . . , λit in decreasing order of their length.
When several columns have the same lengths, we put first the columns of λi1 , then those of λi2 and so
on; see Figure 2 (at the moment, please disregard symbols in boxes). This gives a way to identify boxes
of λI with boxes of the diagrams λis (1 ≤ s ≤ t). With this identification, if b = (r, c) is a box in λg for
some g ∈ I , its leg-length `(b) in λI is the same as in λg . At the opposite, the arm length of b in λI may
be bigger than the one in λg . We denote these two quantities by aI(b) and ag(b), respectively. Let us also
define, ai(b) for i 6= g in I , as
• for i < g, ai(b) is the number of boxes b′ in the r-th row of λi such that the size of the column of b′ is

smaller than the size of the column of b (e.g., on Figure 2, for i = 1, these are boxes with a diamond);
• for i > g, ai(b) is the number of boxes b′ in the r-th row of λi such that the size of the column of b′ is

at most the size of the column of b (e.g., on Figure 2, for i = 3, these are boxes with an asterisk).
Looking at Figure 2, it is easy to see that aI(b) =

∑
i∈I ai(b). Therefore, for G ⊆ [r], one has:

uG = hα

⊕
g∈G

λg

 =
∏
g∈G

[∏
b∈λg

`(b) + 1 + α · aG(b)

]
.

Plugging it into Eq. (9) (which is the definition of T[r](u)) and changing the order of the products, we
get:

1 + T[r](u) =
∏
g∈[r]

∏
b∈λg

 ∏
G⊆[r]
G3g

(
`(b) + 1 + α · aG(b)

)(−1)r−|G| . (12)
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The expression inside the bracket corresponds to 1 + T[r]\{g}(v
b), where vb is defined as follows: if I is

a subset of [r] \ {g}, then
vbI = `(b) + 1 + α · aI∪{g}(b).

But, as explained above, aI(b) =
∑
i∈I ai(b). Thus vbI is as in Lemma 3.5 with the following values of

the parameters: K = [r] \ {g}, C = `(b) + 1 + αag(b), and ci = ai(b) for i 6= g. Therefore the lemma
asserts that T[r]\{g}(vb) = O(αr−1). Going back to Eq. (12), we have:

1 + T[r](u) =
∏
g∈[r]

∏
b∈λg

(1 + T[r]\{g}(v
b)) = 1 +O(αr−1),

which completes the proof. 2

Let us now look at the second hook-polynomial h′α. If we try to adapt the argument above, we want,
for each box b, to apply Lemma 3.5 with K = [r] \ {g}, C = `(b) + α(1 + ag(b)), and ci = ai(b) for
i 6= g. But boxes b with leg-length 0 will create a difficulty as, for such boxes, C−1 is not O(1) and the
hypothesis of Lemma 3.5 is not fulfilled. To overcome this problem we define

h′′α(λ) =
∏
�∈λ
`(�)6=0

(αa(�) + `(�) + α) , so that h′α(λ) = αλ1

(∏
i

mi(λ
t)!

)
h′′α(λ). (13)

Then, the exact same proof as for hα yields the following result:

Proposition 3.7 Fix some partitions λ1, . . . , λr and, for any subset I of [r], set vI := h′′α(λ
I). The family

(vI) has the strong factorization, and hence, the small cumulant properties.

4 Strong factorization property of Jack polynomials
Let us fix partitions λ1, . . . , λr, and for any subset I ⊆ [r] we define uI := J

(α)

λI
; we will consider this

particular family u = (uI)I⊆[r] throughout this section. With this choice, the cumulant κ[r](u) is equal
to the cumulant κJ(λ1, · · · , λr) considered in the introduction. The purpose of this section is to prove
Theorem 1.4, namely that κ[r](u) is O(αr−1).

4.1 Preliminary results
Proposition 4.1 For any partitions λ1, . . . , λr there exists coefficients cλ

1,...,λr

µ ∈ Q[α] such that

κ[r](u) =
∑
µ<λ[r]

cλ
1,...,λr

µ mµ +O(αr−1).

Proof: First observe that for any partitions ν1 and ν2, we have

mν1mν2 = mν1⊕ν2 +
∑

µ<ν1⊕ν2

bν
1,ν2

µ mµ,

for some integers bν
1,ν2

µ . Thanks to property (C2) from Proposition 2.1 and the above observation
on products of monomials, for any set-partition π = {π1, · · · , πs} ∈ P([r]), there exist coefficients
dλ

π1 ,··· ,λπs
µ ∈ Q[α] such that:

J
(α)
λπ1 · · · J

(α)
λπs = hα(λ

π1) · · ·hα(λπs)mλ[r] +
∑
µ<λ[r]

dλ
π1 ,··· ,λπs
µ mµ.
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As a consequence, there exist coefficients cλ
1,...,λr

µ ∈ Q[α] such that

κ[r](u) = κ[r](v)mλ[r] +
∑
µ<λ[r]

cλ
1,...,λr

µ mµ,

where vI = hα
(
λI
)
. Proposition 3.6 completes the proof. 2

Let us now define two functions that will be of great importance in the proof of Theorem 1.4:

A1(λ
1, . . . , λr) :=

∑
π∈P([r])

[
(−1)#(π)−1(#(π)− 1)!

(∑
B∈π

b(λB)

) ∏
B∈π

J
(α)

λB

]
, (14)

A2(λ
1, . . . , λr) :=

∑
π∈P([r]);#(π)≥2

(−1)#(π)−1(#(π)− 1)!D1,2

(
J
(α)

λB
: B ∈ π

)
, (15)

where D1,2 is defined by

D1,2(f1, . . . , fk) :=
∑

1≤m≤N

∑
1≤i<j≤k

f1 · · ·
(
xm

∂

∂xm
fi

)
· · ·
(
xm

∂

∂xm
fj

)
· · · fk. (16)

Given two partitions λ1 and λ2 we also define InEx(λ1, λ2) := b(λ1 ⊕ λ2) − b(λ1) − b(λ2). Here
is a key lemma (for a proof, we refer to [2, Lemmas 4.3 and 4.4]) that expresses A1 and A2 in terms of
cumulants.

Lemma 4.2 For any positive integer r ≥ 2 and any partitions λ1, . . . , λr we have the following equali-
ties:

A1(λ
1, . . . , λr) = b

(
λ[r]
)
κ[r](u) +

1

2

∑
∅(I([r]

InEx
(
λI , λI

c
)
κI(u)κIc(u), (17)

A2(λ
1, . . . , λr) = −1

2

∑
1≤m≤N

∑
∅(I([r]

(
xm

∂

∂xm
κI(u)

)(
xm

∂

∂xm
κIc(u)

)
, (18)

where Ic denotes the complement of I in [r], i.e. Ic := [r] \ I .

4.2 Proof of Theorem 1.4

Proof of Theorem 1.4: The proof will by given by induction on r. Observe that the case r = 2 follows
from the specialization of Jack polynomials at α = 0.

Let us assume that the statement holds true for all m < r. Notice first that by Leibniz rule, for any
f1, . . . , fk ∈ Sym, one has the following expansions:

Dα (f1 · · · fk) =
∑

1≤i≤k

f1 · · · (Dαfi) · · · fk +D1,2(f1, . . . , fk),

where D1,2 is given by Eq. (16). Fix some partitions λ1, . . . , λr and a set-partition π = {π1, . . . , πs} of
[r]. Then applying above Leibniz rule, and Proposition 2.1 one has

Dα

(
J
(α)
λπ1 · · · J

(α)
λπs

)
=
(
(N − 1)

∣∣λ[r]∣∣− b((λ[r])t)) J (α)
λπ1 · · · J

(α)
λπs

+ α

 ∑
1≤i≤s

b(λπi)

 J
(α)
λπ1 · · · J

(α)
λπs +D1,2

(
J
(α)
λπ1 , . . . , J

(α)
λπs

) .
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Using now the definition of cumulants, (8), it gives us the following identity:

Dακ[r](u) =
(
(N − 1)

∣∣λ[r]∣∣− b((λ[r])t))κ[r](u) + α
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
,

whereA1 andA2 are given by (14) and (15), respectively. Consider the coefficient of αj in the expression
above. We have

[αj ]Dακ[r](u) =
(
(N − 1)

∣∣∣λ[r]∣∣∣− b((λ[r])t)) [αj ]κ[r](u)
+ [αj−1]

(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
.

On the other hand, since Dα = D1 + αD2, one has

[αj ]Dακ[r](u) = D1

(
[αj ]κ[r](u)

)
+D2

(
[αj−1]κ[r](u)

)
.

Comparing both expression, we have the following identity, which will be a key tool in the proof:

D1

(
[αj ]κ[r](u)

)
+D2

(
[αj−1]κ[r](u)

)
=
(
(N − 1)

∣∣∣λ[r]∣∣∣− b((λ[r])t)) [αj ]κ[r](u) + [αj−1]
(
A1(λ

1, . . . , λr) +A2(λ
1, . . . , λr)

)
. (19)

We recall that our goal is to prove that [αj ]κ[r](u) = 0 for any 0 ≤ j ≤ r−2. We proceed by induction
on j. Consider the case j = 0. Since κ[r](u), A1 and A2 are polynomials in α, Eq. (19) simplifies then to

D1f =
(
(N − 1)

∣∣∣λ[r]∣∣∣− b((λ[r])t)) f,
where f = [a0]κ[r](u). Thanks to Proposition 4.1 we know that f satisfies the assumptions of Corol-
lary 2.3 and hence it is equal to zero.

Now, we fix j ≤ r − 2 and assume that [αi]κ[r](u) = 0 holds true for all 0 ≤ i < j; we are going to
show that it holds true for i = j as well.

First, we claim that [αj−1]A1(λ
1, . . . , λr) = 0. Indeed, from the induction hypothesis, for each subset

I with ∅ ( I ( [r] one has κI(u) = O(α|I|−1) and κIc(u) = O(α|I
c|−1) = O(αr−|I|−1). We then use

Lemma 4.2 and write (recall that j − 1 < r − 2):

[αj−1]A1(λ
1, . . . , λr) = b

(
λ[r]
)
[αj−1]κ[r](u)+

1

2

∑
∅(I([r]

[αj−1]InEx
(
λI , λI

c
)
κI(u)κIc(u) = 0.

Similarly, one can prove that [αj−1]A2(λ
1, . . . , λr) = 0. Indeed, using a similar argument as before,

we have
1

2

∑
1≤m≤N

∑
∅(I([r]

(
xm

∂

∂xm
κI(u)

)(
xm

∂

∂xm
κIc(u)

)
= O(αr−2).

But, from Eq. (18), the left-hand side is A2(λ
1, . . . , λr), and we have j − 1 < r − 2, which implies that

[αj−1]A2(λ
1, . . . , λr) = 0, as wanted.

Moreover, by induction hypothesis, [αj−1]κ[r](u) = 0. These computations show that Eq. (19) simpli-
fies to

D1f =
(
(N − 1)

∣∣∣λ[r]∣∣∣− b((λ[r])t)) f,
where f = [aj ]κ[r](u). Again, thanks to Proposition 4.1 we know that f satisfies assumptions from
Corollary 2.3 and thus is equal to zero, which finishes the proof. 2
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5 Polynomiality in b-conjecture
5.1 Cumulants of functions on Young diagrams
Consider a function F on Young diagrams and some diagrams λ1, · · · , λr. Then we consider the family
defined by uI = F

(⊕
i∈I λ

i
)

(recall that we use ⊕ for entry-wise sum of partitions).

Definition 5.1 We say that a function G on Young diagrams has the small cumulant property if, for any
r ≥ 1 and for any partitions λ1, · · · , λr, the above-defined family has the small cumulant property.

With this terminology, the results of the previous sections can be reformulate as:

Theorem 1.4 For a fixed alphabet x, the function λ 7→ J
(α)
λ (x) has the small cumulant property.

Propositions 3.6 and 3.7 The functions hα and h′′α have the small cumulant property.

Corollary 3.4 If G1 and G2 have the small cumulant properties and take non-zero values, then so have
G1 ·G2 and G1/G2 (if G2 is not identically equal to 0).

As a consequence, the function λ 7→ 1
hα(λ)h′′α(λ)

J
(α)
λ (x)J

(α)
λ (y)J

(α)
λ (z) has the small cumulant property.

We will use that later in this Section.

5.2 Cumulants and logarithm
Lemma 5.2 Let F be a function on Young diagrams and define u as above. Denote κF (λ1, · · · , λr) the
cumulant κ[r](u). Then we have the following equality of formal power series in t = (t1, t2, . . . ):

log
∑
λ

F (λ)

αλ1
∏
imi(λt)!

tλ
t

=
∑
r≥1

1

r!αr

∑
(j1,··· ,jr)

κF (1j1 , · · · , 1jr ) tj1 · · · tjr .

Proof: Omitted. The proof consist in comparing the coefficient of F (λ1) · · ·F (λs)t(λ1)t · · · t(λs)t in both
sides of the identity we want to establish. See the long version [2] for details. 2

Remark 5.3 The statement of this lemma is reminiscent of the fact that cumulants can be either defined
as a sum over set-partitions or as coefficients in the generating series of the logarithm of the moment
generating series; see, e.g. Eqs (3) and (II.c) in [13]. The proof is also an easy adaptation of the one of
this well-understood statement.

We have now all the tools needed to prove the polynomiality in b-conjecture.

Proof of Theorem 1.2: Recall that it is enough to prove that hτµ,ν(β) has no pole in α = 0, i.e. that
hτµ,ν(β) = O(1). From Eq. (1), this amounts to establish that

log

(∑
τ∈P

J
(α)
τ (x) J

(α)
τ (y) J

(α)
τ (z) t|τ |

hα(λ)h′α(λ)

)
= O(α−1).

But, using Eq. (13), we see that this quantity is the left-hand side of Lemma 5.2 for

F (λ) =
1

hα(λ)h′′α(λ)
Jαλ (x)J

α
λ (y)J

α
λ (z)

and t1 = t2 = · · · = t. It was observed at the end of Section 5.1 that this function F has the small
cumulant property. Therefore, for any j1, · · · , jr, the cumulant κF (1j1 , · · · , 1jr ) is O(αr−1) and, thus,
the right-hand side of Lemma 5.2 is O(α−1). This finishes the proof of the polynomiality. 2
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