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A noncommutative geometric LR rule
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Abstract The geometric Littlewood-Richardson (LR) rule is a combinatorial algorithm for computing LR coefficients
derived from degenerating the Richardson variety into a union of Schubert varieties in the Grassmannian. Such rules
were first given by Vakil and later generalized by Coskun. In this paper we give a noncommutative version of the
geometric LR rule. As a consequence, we establish a geometric explanation for the positivity of noncommutative LR
coefficients in certain cases.

Résumé La règle de Littlewood–Richardson (LR) géométrique est un algorithme combinatoire de calcul des coeffi-
cients de LR, conçu à partir de l’étude des dégénérations d’une variété de Richardson en variétés de Schubert, dans
la Grassmannienne. Vakil a été le premier à donner une telle règle, et Coskun en a produit des généralisations. Dans
cet article, nous donnons une version non–commutative de la règle de LR géométrique. Comme conséquence, nous
obtenons une explication géométrique de la positivité de certains coefficients de LR non-commutatifs.

Keywords. Grassmannians, Mondrian tableaux, noncommutative symmetric functions, Schubert calculus, symmetric
functions

1 Introduction
Let Gr(k, n) denote the Grassmannian of k-dimensional vector spaces in Cn. For any partition λ whose
Young diagram is contained in a k × (n − k) rectangle, let σλ denote the corresponding Schubert class
in the cohomology ring H∗(Gr(k, n)). The Schubert classes {σλ} form a basis of H∗(Gr(k, n)) and we
have the following cup product expansion

σλ ∪ σµ =
∑
ν

cνλµσν

where the sum is over all partitions ν whose Young diagram is contained in a k × (n− k) rectangle. The
cνλµ are called Littlewood-Richardson (LR) coefficients and are nonnegative integers. That they also arise
in the following setting is one of the most important and rich source of mathematics in the last century.

†Email: edward.richmond@okstate.edu
‡Email: vasut@math.washington.edu
§Email: steph@math.ubc.ca

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html


1040 Edward Richmond, Vasu Tewari, and Stephanie van Willigenburg

For a partition λ, let sλ denote the corresponding Schur function in the algebra of symmetric functions
Sym. The Schur functions form an additive basis of Sym and are ubiquitous in mathematics. Given
partitions λ and µ, the product sλ · sµ expands in the Schur basis with the same structure coefficients as
the cup product expansion earlier.

sλ · sµ =
∑
ν

cνλµsν

While there are several combinatorial rules for computing LR coefficients, our motivation comes from
geometric ways of computing them. Given partitions λ and µ, let Xµ∨

λ denote the Richardson variety
obtained as the transversal intersection of the Schubert varieties Xλ and Xµ in Gr(k, n). Its cohomology
class [Xµ∨

λ ] equals σλ∪σµ and hence LR coefficients can be calculated by studying its geometry. Starting
from the work of Vakil [Vak06], this path has also been taken by Coskun [Cos09] and Liu [Liu10]. The
core idea is to perform a series of flag degenerations that breaks the Richardson variety Xµ∨

λ into a union
of Schubert varieties. All resulting algorithms have the feature that they can be diagramed by a rooted
binary tree, where the root represents Xµ∨

λ and each node represents a component of the degeneration. It
is in this setting that we have our results.

Consider the algebra of noncommutative symmetric functions, denoted by NSym, introduced in the
seminal work [GKL+95]. Since then, this algebra has come to play a major role in algebraic combina-
torics, in no small measure due to its strong links with the algebras of symmetric functions and quasisym-
metric functions. A distinguished basis for NSym, introduced by Bessenrodt, Luoto and van Willigenburg
in [BLvW11] and whose origin can be traced to the theory of Macdonald polynomials, is the basis of non-
commutative Schur functions sα where α is a strong composition. These functions are a noncommutative
lift of Schur functions and exhibit many of their features such as Pieri rules, Kostka numbers, and an LR
rule; we discuss the last of these next. The noncommutative LR coefficients Cγαβ are defined as structure
coefficients of the product

sα · sβ =
∑
γ

Cγαβ sγ

and they also turn out to be nonnegative integers. For more details on noncommutative Schur functions
and their properties, the reader is referred to [LMvW13] and the numerous references therein.

In this extended abstract, we strengthen the connection between noncommutative Schur functions and
classical Schur functions by identifying how noncommutative LR coefficients arise in Schubert calculus.
More precisely, we

1. provide a rewrite of Coskun’s Grassmannian algorithm (Table 1).

2. give a noncommutative generalization of Coskun’s Grassmannian algorithm, and demonstrate how
the original algorithm can be recovered as a special case (Table 2 and Theorem 4.7).

3. give geometric meaning to the noncommutative LR coefficients in the setting of the cohomology of
the Grassmannian (Section 5 and Theorem 5.2).

Given the space constraints, we will omit proofs, but indicate proof techniques involved in Section 6 for
the curious reader.
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2 Background
By convention, given a positive integer n, we refer to the set of first n positive integers by [n]. Moreover,
given positive integers p and q, we refer to the set {i | p ≤ i ≤ q} as [p, q], and call it an interval.

2.1 Compositions and partitions
A weak composition α = (α1, . . . , αl) is a finite ordered list of nonnegative integers. The αi for 1 ≤ i ≤ l
are called the parts of α, while l is called the length of α and is denoted by `(α). The strong composition
underlying α, denoted by α+, is obtained by removing parts of α that equal 0. From this point on, we
will take composition to mean a weak composition only. The size of α, denoted by |α|, is defined to be
the sum of its parts. The corresponding reverse composition diagram of α is an array of left-justified cells
where the i-th row has αi cells. Here we use the English convention in which the rows are ordered from
top to bottom.

A strong composition λ = (λ1, . . . , λl) is a partition if λ1 ≥ · · · ≥ λl holds. For any composition
α, there is an underlying partition α̃ obtained by arranging the parts of α in weakly decreasing order and
omitting zeros. For a partition λ, its conjugate partition, denoted by λt, is obtained by switching the rows
and columns of the reverse composition diagram of λ. For any partition λ, we impose the convention that
λi = 0 for all i > `(λ). This given we can define dual partitions.

Suppose that the reverse composition diagram corresponding to a partition λ = (λ1, . . . , λl) fits in
a k × (n − k) rectangle, that is, λ1 ≤ n − k and l ≤ k. Then the dual partition λ∨ is defined to be
the partition γ̃ where γ = (n − k − λk, . . . , n − k − λ1). Note that the reverse composition diagram
corresponding to λ∨ is also contained in a k × (n − k) rectangle. Henceforth, we denote the fact that λ
is contained in a k × (n − k) rectangle succinctly by stating λ ⊆ (n − k)k. We further remark that the
notion of dual partition only makes sense if we have a bounding rectangle to begin with. Finally, we note
that the reverse composition diagram corresponding to a partition is the same as the more commonly used
notion of Young diagram, using the English convention.

Example 2.1 The reverse composition diagram of α = (2, 0, 4, 3, 6) is shown below.

The strong composition corresponding to α is α+ = (2, 4, 3, 6). The underlying partition is α̃ =
(6, 4, 3, 2) and its conjugate is α̃t = (4, 4, 3, 2, 1, 1). Note that α̃ fits in a 5× 6 rectangle. Hence α̃∨ = γ̃
where γ = (6− 0, 6− 2, 6− 3, 6− 4, 6− 6). Thus α̃∨ = (6, 4, 3, 2) as well.

2.2 Operators on compositions
Next we consider two operators on compositions, whose definition is motivated from Pieri rules for qua-
sisymmetric Schur functions and noncommutative Schur functions respectively.

The box removing operators on compositions di for i ≥ 1 have the following description: di(α) is the
composition obtained by subtracting 1 from the rightmost part equaling i in α. If there is no such part,
then di(α) = 0.

Example 2.2 Let α = (2, 1, 2). Then d1(α) = (2, 0, 2) and d2(α) = (2, 1, 1).
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Given a finite set I = {i1 < · · · < ik} of positive integers, define dI = di1di2 · · · dik . If I is the empty
set, then we will think of dI as the identity map, and thus it does nothing to the composition it acts on.

Example 2.3 If α = (4, 2, 3, 2), then d[2,4](α) = (3, 2, 2, 1).

d[2,4] //

Consider now the box adding operators on compositions ti for i ≥ 1 defined as follows: Given α =
(α1, . . . , αl), define t1(α) to be (1, α1, . . . , αl) and ti(α) to be (α1, . . . , αj + 1, . . . , αl) if αj is the
leftmost part equaling i− 1 in α for i ≥ 2. If there is no such part, then ti(α) = 0.

Example 2.4 Consider the composition α = (3, 2, 3, 1, 2). Then t1(α) = (1, 3, 2, 3, 1, 2), t2(α) =
(3, 2, 3, 2, 2), t3(α) = (3, 3, 3, 1, 2), t4(α) = (4, 2, 3, 1, 2) and ti(α) = 0 for all i ≥ 5.

2.3 Noncommutative Schur functions
The algebra of noncommutative symmetric functions NSym, introduced in [GKL+95], is the free associa-
tive graded algebra generated over Q by the noncommuting indeterminates h1,h2, . . . where deg(hi) = i
for i ≥ 1. Given a strong composition α = (α1, . . . , αl), we can define the noncommutative homogeneous
complete symmetric function indexed by α, denoted by hα, as follows.

hα = hα1 · · ·hαl

The set of hα where α runs over all strong compositions forms a multiplicative basis for NSym. As is
the case in the classical theory of symmetric functions, NSym has a host of other interesting bases. Our
interest lies in the basis of noncommutative Schur functions, denoted by s, defined originally as being
Hopf dual to the basis of quasisymmetric Schur functions. Here we adopt the following indirect inductive
definition. For n ≥ 1, we define s(n) to be hn. Given a strong composition α that has at least two parts,
we define sα using the left Pieri rule from [BLvW11].

Theorem 2.5 [BLvW11, Corollary 3.8] Given positive integer m and a strong composition β, we have
the following expansion.

hm · sβ =
∑

sγ

where the sum runs over all strong compositions γ that can be written as ti1 · · · tim(β) = γ with i1 >
· · · > im.

Example 2.6 The rule above implies that h1 ·s(2) = s(1,2)+s(3). Using s(2) = h2 and s(3) = h3 = h(3),
we obtain the following expansion for s(1,2) in the h-basis.

s(1,2) = h(1,2) − h(3)

The projection map χ from NSym to Sym mapping hn to the complete homogeneous symmetric func-
tion hn maps the noncommutative Schur function sα to the Schur function sα̃ [BLvW11, Equation 2.12].
This can be seen by realizing that Theorem 2.5 reduces to the classical Pieri rule in the commutative
setting. At this point, it is worth noting that the basis of Schur functions can also be defined indirectly as
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the unique basis of Sym that satisfies the classical Pieri rule. Hence noncommutative Schur functions are
indeed noncommutative lifts of Schur functions.

This brings us to our first result, which is a noncommutative analogue of the Jacobi-Trudi determinant
formula for Schur functions. Since there is no uniform notion of determinants in noncommutative rings,
we will adopt the following convention: Given an n × n matrix A = (aij)1≤i,j≤n where the aij are
noncommuting indeterminates, we define det(A) to be∑

σ∈Sn

sgn(σ)aσ(1),1 · · · aσ(n),n

where sgn(σ) is the sign of the permutation σ. Using Theorem 2.5 in conjunction with an appropriate
sign-reversing involution, we can prove the following.

Theorem 2.7 Let λ = (λ1, . . . , λl) be a partition. Consider the matrix JTλ = (hλi−i+j)1≤i,j≤l. Then
sλ = det(JTλ).

In using the above theorem, we define h0 to be 1 and hm = 0 if m < 0.

Example 2.8 Let λ = (4, 3, 2). Then JT(4,3,2) =

 h4 h5 h6

h2 h3 h4

h0 h1 h2

 and Theorem 2.7 then implies the

following expansion.

s(4,3,2) = h(4,3,2) − h(4,1,4) − h(2,5,2) + h(2,1,6) + h(5,4) − h(3,6)

Theorem 2.5 is a special case of the noncommutative LR rule stated in [BLvW11, Theorem 3.5]. The
noncommutative LR coefficients Cγαβ are structure coefficients occurring in the following expansion.

sα · sβ =
∑
γ

Cγαβ sγ

They turn out to be nonnegative integers, and are indeed given a combinatorial interpretation in [BLvW11].
For the purposes of this extended abstract, we do not state the aforementioned interpretation here, but men-
tion that the Cγαβ count the number of skew standard reverse composition tableaux of a fixed shape γ//β
that rectify to a unique standard reverse composition tableau of shape α.

This interpretation, though, is not easy to implement in practice. In what follows, not only do we give
a straightforward algorithm to compute noncommutative LR coefficients, we further give the coefficients
an interpretation in the setting of the cohomology of the Grassmannian in Section 5. The starting point
for our proof is the noncommutative analogue of the Jacobi-Trudi formula stated in Theorem 2.7.

3 Geometric LR rules and the Coskun algorithm
In [Cos09], Coskun gives a geometric algorithm to compute classical LR coefficients using flag degener-
ations on the Richardson variety, and the combinatorial objects that keep track of these degenerations are
LR Mondrian tableaux. We begin with the following alternate formulation of the original definition of LR
Mondrian tableau [Cos09, Definition 3.22] for easier comprehension (with some work, this can be shown
to be equivalent to Coskun’s original definition).
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Definition 3.1 An LR Mondrian tableau M = (D1, . . . , Ds = ABs, ABs+1, . . . , ABk) is an ordered
collection of k distinct intervals in [n] such that the following properties are satisfied.

1. If ABi = [li, ri] and ABi+1 = [li+1, ri+1], then li < li+1 ≤ ri + 1 and ri < ri+1.

2. |Ds ∪ABs+1| − |ABs+1| ≥ s.

3. Either D1 ⊂ · · · ⊂ Ds or there is a unique Dt such that the following hold.

(i) D1 ⊂ · · · ⊂ Dt−1 ⊂ Dt+1 ⊂ · · · ⊂ Ds and Dt−1 * Dt ⊂ Dt+1.

(ii) For any u < t, if Du = [lu, ru] and Dt = [lt, rt], then lu < lt and ru < rt.

(iii) |Dt−1 ∪Dt| − |Dt| ≥ t− 1, and lt ≤ rt−1 + 1.

(iv) Dt−1 ∪Dt is a proper subset of Dt+1.

(v) If u < t < v ≤ s, then lu > lv .

We say an LR Mondrian tableau is nested if D1 ⊂ · · · ⊂ Ds and s = k. If M is not nested, then M has a
unique active interval defined to be Dt−1 if it exists and Ds otherwise.

We call the two types of intervals appearing in the above definition the D intervals and the AB intervals.
If the distinction between these two types of intervals is not required, then we will refer to the k intervals
in an LR Mondrian tableau as M1, . . . ,Mk.

Example 3.2 Let k = 4 and n = 8 and consider the LR Mondrian tableauM = ([2, 4], [1, 5], [4, 7], [6, 8]).
The D intervals are [2, 4] and [1, 5], while the AB intervals are [1, 5], [4, 7] and [6, 8]. The active interval
is [1, 5]. Pictorially, we denote LR Mondrian tableaux by stacking the intervals ofM in an array as shown
below. Here we highlight the active interval.

Given partitions λ, µ ⊆ (n − k)k, define the LR Mondrian tableau M(λ, µ) by defining the intervals
Mi(λ, µ) := [n− k− µ∨i + i, n− k− λi + i]. We state Coskun’s recursive algorithm [Cos09, Algorithm
3.24] for Grassmannians in Table 1, where all the notation is as in Definition 3.1.

Coskun proves that both moves A and B map an LR Mondrian tableauM to another valid LR Mondrian
tableau. He also proves that the conditions to apply at least one of moves always holds unless M is nested
and hence the algorithm successfully terminates. Note that if M satisfies ri ≥ li+1 − 1, for all i ≤ k,
then A(M) and B(M) also satisfy this condition for all i ≤ k. Hence if M(λ, µ) satisfies this condition,
then move A is always possible as the Coskun algorithm runs. It is easy to check that if n− k ≥ λ1 +µ1,
then ri ≥ li+1 − 1, for all i ≤ k in M(λ, µ). If M is nested, then we can associate a partition ν(M) = γ̃
where γ = (n−k+ 1−|M1| ≥ n−k+ 2−|M2| ≥ · · · ≥ n−|Mk|). The output of Coskun’s algorithm
relates to the following theorem from [Cos09] which we have reformulated for the purpose of brevity.

Theorem 3.3 [Cos09, Theorem 3.25]. Given partitions λ, µ such that λ, µ ⊆ (n − k)k, we have the
following expansion.

sλ · sµ =
∑

M∈OutM(λ,µ)

sν(M)
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Input: Let M := M(λ, µ) and repeat the following moves until the algorithm terminates.

Move 0: If M is nested, then we are finished. Otherwise, let Mi = Ds if the D intervals are nested,
and if not, let Mi = Dt−1. We call Mi the active interval. Do the following moves if possible:

Move A: If ri ≥ li+1 − 1, then replace the intervals Mi+1,Mi and Mu where u < i and lu = li with
Mi+1 = [li+1, ri+1] 7→ A(M)i+1 := [li, ri+1]
Mi = [li, ri] 7→ A(M)i := [li+1, ri + 1]
Mu = [lu, ru] 7→ A(M)u := [lu + 1, ru + 1]

and fix all other intervals. Set M := A(M).

Move B: If li < li+1 − i and ri < ri+1 − 1, then replace the intervals Mi and Mu where u < i and
lu = li with

Mi = [li, ri] 7→ B(M)i := [li + 1, ri + 1]
Mu = [lu, ru] 7→ B(M)u := [lu + 1, ru + 1]

and fix all other intervals. Set M := B(M).

Output: A finite collection of nested LR Mondrian tableaux.
Let OutM(λ, µ) denote this multiset of LR Mondrian tableaux.

Tab. 1: Coskun algorithm [Cos09, Algorithm 3.24]

Example 3.4 Let k = 3, n = 7 and λ = (1), µ = (2, 1). Coskun’s algorithm starting from M(λ, µ) =
([1, 4], [3, 6], [5, 7]) executes as shown below. Vertical and horizontal edges correspond to moves A and B
respectively.

��

//

��

�� ��

��

//

�� ��

From the above we conclude that

s(1) · s(2,1) = s(3,1) + s(2,2) + s(2,1,1).
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4 An algorithm for multiplying noncommutative Schur functions
In this section, we describe our algorithm for computing the product sα·sλ whereα is a strong composition
and λ is a partition. This algorithm is similar to geometric LR rules found in [Cos09, Liu10, Vak06] in the
sense that it can be represented by a rooted binary tree where the root corresponds to the input, the leaves
correspond to the output and each edge corresponds to one iteration of the algorithm.

We call any rectangular grid B with shaded and empty cells a board. We use the standard matrix
notation B(i, j) to reference the cell in the ith row and jth column of B where B(1, 1) is the cell in the
upper left corner. We say a shaded cell B(i, j) is unstable if the cell B(i, j − 1) is empty. If the cell
B(i, j − 1) is shaded or j = 1, then we say the shaded cell B(i, j) is stable. Note that only shaded cells
can be stable or unstable. If B(i, j) is an unstable cell, then we stabilize the cell B(i, j) by shading in all
empty cells to the left of B(i, j).

Example 4.1 On the left is a board B with unstable cells B(1, 5),B(2, 5) and B(3, 6), and on the right is
the board obtained by stabilizing B(1, 5).

We say an unstable cell B(i, j) is active if for all other unstable cells B(k, l), we have j ≤ l. For
example, the board B above has two active cells at B(1, 5) and B(2, 5).

Definition 4.2 Given strong compositions α and β satisfying `(α) ≤ l and `(β) ≤ l, we define the
board Init(α, β) as follows: Let the largest parts of α and β be i and j respectively. Place the reverse
composition diagrams of α and β on a 2l × (i+ j) grid where we shade the diagram of α justified in the
upper left corner and shade the diagram of β justified in the lower right corner.

Example 4.3 Let α = (1, 2, 2, 3), β = (4, 2, 4, 1), and l = 4. Then Init(α, β) is the board below.

It is easy to see that the number of unstable cells in Init(α, β) is `(β). Observe further that all cells
corresponding to α are stable. We state our recursive noncommutative algorithm in Table 2.

To any stable board B, we can associate the corresponding weak composition γ(B) = (γ1, . . . , γ2l)
where γi is the number of shaded cells in row i for 1 ≤ i ≤ 2l. We now state one of our main results
showing how the above algorithm computes noncommutative LR coefficients.

Theorem 4.4 Given a strong composition α and a partition λ, we have the following expansion.

sα · sλ =
∑

B∈Out(α,λ)

sγ(B)+

Next we consider an example of the noncommutative algorithm. So as to get an idea of the results that
follow, the reader is encouraged to compare it with Example 3.4 and notice the similarity.
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Input: Let α be a strong composition and λ be a partition, and let B := Init(α, λ). Repeat the
following moves until the algorithm terminates.

Move 0: If B has no unstable cells, then we are finished. Otherwise do the following moves if possible:

Move A: Move every active cell B(i, j + 1) to B(i, j). Update B.

Move B: Let B(i, j + 1) denote the active cell with the smallest row index and let q denote the number
of empty cells to the left of B(i, j + 1). If d[j−q+1,j](α) 6= 0, then replace the reverse composition
diagram of α with the reverse composition diagram of d[j−q+1,j](α) in the upper left corner and
stabilize B(i, j + 1). Update B.

Output: A finite collection of stable boards, that is, boards with no unstable cells.
Let Out(α, λ) denote this multiset of stable boards.

Tab. 2: Noncommutative algorithm

Example 4.5 Let α = (1) and β = (2, 1). Since both α and β fit inside a 2 × 2 rectangle, and the sum
of the greatest parts of α and β is 3, our initial board has dimensions 4 × 3. Theorem 4.4 implies the
following expansion, as the subsequent computation shows.

s(1) · s(2,1) = s(1,2,1) + s(2,2) + s(3,1)

Downward arrows correspond to a move A and rightward arrows correspond to a move B. Active cells
are highlighted orange. Cells used to stabilize active cells are highlighted dark green.

��

//

��

�� ��

��

//

Given a partition λ = (λ1, . . . , λl), let λ′ = ξ+ where ξ = (λ1 − 1, . . . , λl − 1). Then the binary tree
generated by executing the noncommutative algorithm starting from Init(α, λ′) is isomorphic to a subtree
of the one generated by Init(α, λ). This recursiveness allows us to conclude the following.
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Corollary 4.6 (Noncommutative scaling) Given a strong composition α and a partition λ, let λ′ be
defined as before. If γ = (γ1, . . . , γp) is a strong composition such that Cγαλ 6= 0, then we have Cγ

′

αλ′ 6= 0
where γ′ = δ+ and δ = (γ1 − 1, . . . , γp − 1).

Our next theorem shows that the Grassmannian algorithm of Coskun is a special case of the noncom-
mutative algorithm. As a corollary of Theorem 4.4, we show both algorithms can be used to compute
noncommutative LR coefficients in the case where α, β are partitions. One immediate consequence is a
new proof that Coskun’s algorithm computes classical LR coefficients.

Theorem 4.7 Given partitions λ and µ, there is an explicit map Φ from LR Mondrian tableaux to boards
which maps the rooted tree obtained from executing Coskun’s algorithm starting from M(λt, µt) home-
omorphically onto the rooted tree obtained from executing the noncommutative algorithm starting from
initial board Init(λ, µ). Moreover, this maps restricts to a bijection from OutM(λt, µt) to Out(λ, µ).

The description of the map Φ, while not being convoluted, is omitted here for the sake of space. But
we find it worthwhile to mention that our map links Coskun’s and Liu’s algorithms as well.

In view of the last statement of the above theorem, we can associate naturally a weak composition γ(M)
with a nested LR Mondrian tableau M . Then, as a corollary of the above theorem and Theorem 4.4, we
obtain the following result that shows that Coskun’s algorithm in fact computes certain noncommutative
LR coefficients.

Corollary 4.8 Given partitions λ and µ, we have the following expansion.

sλ · sµ =
∑

M∈OutM(λt,µt)

sγ(M)

In [Cos09, Theorem 3.25] and [Liu10, Theorem 3.1], Coskun and Liu show their algorithms compute
classical LR coefficients. We give a new proof of their results using Corollary 4.8 and the following result
from [BLvW11].

Theorem 4.9 ([BLvW11, Corollary 3.7]) Given partitions λ, µ, ν and strong compositions α, β such that
α̃ = λ and β̃ = µ, we have the following equality.

cνλµ =
∑
γ̃=ν

Cγαβ

Corollary 4.10 Given partitions λ, µ, and ν, we have the following equality.

cνλµ = |{M ∈ OutM(λ, µ) | γ̃(M)
t

= ν}|

5 Geometric interpretation of the noncommutative algorithm
Since Coskun’s algorithm is derived using flag degenerations techniques, Corollary 4.8 gives geometric
significance to noncommutative algorithm in the case where the input comprises of two partitions. We
recall some preliminaries on Schubert calculus of the Grassmannian. Fix a basis {e1, . . . , en} of Cn
and let Gr(k, n) denote the Grassmannian of k-dimensional vector subspaces in Cn. For any partition
λ ⊆ (n− k)k we define the Schubert variety

Xλ = {V ∈ Gr(k, n) | dim(V ∩ En−k+i−λi
) ≥ i, ∀ 1 ≥ i ≥ k}
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where Ej = span{e1, . . . , ej}. Using dual partitions, we can also define the opposite Schubert variety

Xλ = {V ∈ Gr(k, n) | dim(V ∩ En−k+i−λ∨
i

) ≥ i, ∀ 1 ≥ i ≥ k}

where Ej = span{en−j+1, . . . , en−1, en}. It is well known that

dim(Xλ) = codim(Xλ) = |λ|

and that the Schubert classes σλ = [Xλ] = [Xλ∨
] form an additive basis of the cohomology ring

H∗(Gr(k, n)). The Richardson variety is defined as the intersection Xµ
λ = Xλ ∩Xµ. This intersection is

transverse and hence
[Xµ∨

λ ] = σλ ∪ σµ =
∑
ν

cνλµ σν

where the sum is taken over all partitions ν ⊆ (n−k)k. If we assume that k ≥ |λ|+|µ| and n−k ≥ λ1+µ1,
then the restriction that ν ⊆ (n− k)k is trivial.

In Coskun’s proof of the validity of his algorithm, he associates a certain variety to each Mondrian
tableau as described next.

Definition 5.1 ([Cos09, Definition 3.27]) Let M = (M1, . . . ,Mk) be an LR Mondrian tableau. For any
1 ≤ i ≤ j ≤ k, we define the vector space

EMi = span{ep | p ∈Mi}

and integers ri,j = #{Ml ⊆ (Mi ∩Mj)}. For any LR Mondrian tableau M we associate the subvariety
XM ⊆ Gr(k, n) defined as follows.

XM = {V ∈ Gr(k, n) | dim(V ∩ EMi
∩ EMj

) ≥ ri,j , ∀ i ≤ j}

We remark that XM is an irreducible subvariety of Gr(k, n) [Cos09, Lemma 3.28 and 3.29]. In fact, the
variety associated with the initial LR Mondrian tableau XM(λ,µ) is the Richardson variety Xµ∨

λ . On the
other hand, if M is a nested LR Mondrian tableau, then the variety XM is isomorphic to the Schubert
variety Xν(M), and the cohomology class [XM ] equals σν(M) in H∗(Gr(k, n)). As stated in Corollary

4.10, we have that ν(M) = γ̃(M)
t

.
The LR Mondrian tableaux in the output of Coskun’s algorithm record resulting varieties XM that

appear after performing a sequence of flag degenerations on the Richardson variety Xµ∨

λ . Moves A and B
in the algorithm describe these flag degenerations combinatorially. To put our noncommutative algorithm
in this setting, we will need the notion of position of the varietyXM associated with a nested LR Mondrian
tableau M . We say that the variety XM is in position α if M is nested and γ(M) = α. Note that the
position of M is a weak composition. Given the above setup, we have the following result.

Theorem 5.2 Let λ, µ, ν be partitions and γ be a strong composition such that γ̃t = ν. Then the following
equalities hold.

Cγλµ=|{M ∈ OutM(λt, µt) | XM is in position δ where δ+ = γ }|
cνλµ =|{M ∈ OutM(λt, µt) | the Schubert class σν = [XM ]}|

When calculating classical LR coefficients in Coskun’s algorithm, the final step XM 7→ [XM ] is anal-
ogous to applying the projection map χ to the noncommutative Schur function sγ so as to obtain sγ̃ =
χ(sγ).
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6 Remarks on the proof and algorithm for sα · sβ
At this point, we would also like to emphasize the ‘noncommutative nature’ of our proof of the validity of
the noncommutative algorithm. As mentioned earlier, we employ the left Pieri rule [BLvW11, Corollary
3.8] to prove our noncommutative Jacobi-Trudi determinantal analogue for sλ where λ is a partition. Then
using a Gessel-Viennot-type nonintersecting lattice paths argument involving an intricate sign-reversing
involution, we express right multiplication by sλ in terms of the action of certain monomials involving
jeu de taquin (jdt) operators. The jdt operators have already been shown to arise naturally in the context
of right Pieri rules for noncommutative Schur functions [Tew15], and our proof requires a careful study
of the relations satisfied by these operators. The final step involves showing that the application of these
jdt operators in a prescribed sequence is the same as picking a path from root to leaf in the rooted tree
corresponding to the noncommutative algorithm. We close by revealing that we can compute efficiently
any product of the form sα · sβ where α and β are strong compositions once we have computed sα · sλ
where λ = β̃ using the noncommutative algorithm.
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