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Cyclic inclusion-exclusion and the kernel of
P -partitions
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Abstract. Following the lead of Stanley and Gessel, we consider a linear map which associates to an acyclic directed
graph (or a poset) a quasi-symmetric function. The latter is naturally defined as multivariate generating series of
non-decreasing functions on the graph (or of P -partitions of the poset).

We describe the kernel of this linear map, using a simple combinatorial operation that we call cyclic inclusion-
exclusion. Our result also holds for the natural non-commutative analog and for the commutative and non-commutative
restrictions to bipartite graphs.

Résumé. Dans la lignée de Stanley et Gessel, nous considérons une application linéaire qui associe à un graphe dirigé
acyclique (ou à un poset) une fonction quasi-symétrique. Celle-ci est définie comme la série génératrice multi-variée
des fonction croissantes sur le graphe (ou des P -partitions du poset).

Nous décrivons le noyau de cette application linéaire, à l’aide d’une opération combinatoire simple, que nous appelons
inclusion-exclusion cyclique. Notre résultat est aussi valable pour l’analogue non-commutatif naturel et les restrictions
commutative et non-commutative aux graphes bipartis.

Keywords. partially ordered sets, P -partitions, quasi-symmetric functions

This is an extended abstract of the paper [4], that shall be published elsewhere.

1 Introduction
Given an acyclic directed graph G = (V,EG), it is natural to consider the following multivariate generat-
ing function

ΓG(x1, x2, · · · ) =
∑

f:V→N
f non-decreasing

∏
v∈V

xf(v) (1)

where N is the set of positive integers and non-decreasing means that (i, j) ∈ EG implies f(i) ≤ f(j).
An example is given in Section 2.4. A similar definition can be considered for a poset P = (V,<P ),
replacing (i, j) ∈ EG by i <P j.
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This is a classical object in the algebraic combinatorics literature: using the terminology of the seminal
book of Stanley [10], the non-decreasing functions on posets correspond to P -partitions when P has a
natural labelling (up to reversing the order of P ). The generating function ΓP has then been considered by
Gessel [6], see also Stanley’s textbook [11, Section 7.19]. While not symmetric in the variables x1, x2, . . .,
the function ΓP exhibits some weaker symmetry property and belongs to the now well-studied algebra
of quasi-symmetric functions – in fact, the terminology quasi-symmetric function was introduced in [6],
precisely to study ΓP .

Although posets are more common objects in the literature, the results of this paper are better formu-
lated in terms of acyclic directed graphs. Obviously the map Γ : G→ ΓG defined by (1) can be extended
by linearity to the vector space G of formal linear combinations of acyclic directed graphs, that we call
here the graph algebra. We refer the reader to [5] for a study of this map (and an extension) from a Hopf
algebra point of view. Here, we only focus on the linear structure.

The main result of the present paper is a combinatorial description of the kernel of the map Γ from
the graph algebra to quasi-symmetric functions (Theorem 2). This description relies on a simple com-
binatorial operation, that we call cyclic inclusion-exclusion (the definition and an example are given in
Section 3.1). Before giving some background on this operation, let us mention that this description of the
kernel of Γ is quite robust. Indeed, we shall prove that cyclic inclusion-exclusion also describes the kernel
of some variants of Γ, as follows:
• Working with labeled (acyclic directed) graphs, it is natural to associate to them a multivariate gen-

erating series in non-commuting variables. This object lives in the algebra of word quasi-symmetric
functions [9], sometimes also called quasi-symmetric functions in non-commuting variables; see
[1]. We give a description of the kernel of this map (denoted Γnc) in Theorem 1.
• In the long version of this paper [4], we also consider restrictions of the linear maps Γ and Γnc to

bipartite graphs and describe the kernel of these restrictions via cyclic inclusion-exclusion.
In all these cases, a byproduct of our proof is the surjectivity of the morphism Γ (respectively Γnc and
their restriction to bipartite graphs). The surjectivity in the commutative non-restricted case was observed
by Stanley [12, Note p7], answering a question of Billera and Reiner.

Our proofs use a combination of basic linear algebra, graph combinatorics and (word) quasi-symmetric
function manipulations. In the non-commutative/labeled case, we first exhibit a family of graphs so that
their images form a Z-basis of word quasi-symmetric functions. Then, we show that these graphs span
the quotient of the graph algebra by cyclic inclusion-exclusion relations. With an easy linear algebra
argument, this concludes the proof.

The commutative/unlabeled case can be obtained as a corollary of the non-commutative/labeled case.
In contrast, restrictions to bipartite graphs must be considered separately from the non-restricted setting.
The general structure of the proof is the same in the bipartite setting, although the arguments themselves
are quite different. Because of the limited space in this extended abstract, we do not present the bipartite
case here.

Along the way, this gives natural bases of the word quasi-symmetric function ring. These new bases are
non-commutative lifts of known bases of the quasi-symmetric function ring: in particular, we find natural
analogs of Gessel fundamental basis [6] and of two bases introduced respectively by R. Stanley in [12]
and by K. Luoto in [8].

Let us now say a word about the cyclic inclusion-exclusion operation and how it has proved useful
so far. It has been introduced by the author in the article [3] in the proof of a conjecture of Kerov
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on irreducible character values of the symmetric group. The question addressed here (whether cyclic
inclusion-exclusion relations do or do not span the kernel of Γ) is natural in this context, since it allows to
simplify some arguments in the proof. We refer the reader to the long version [4, Section 6] for details.

Remarkably, this operation of cyclic inclusion-exclusion has also been fruitful in a quite different con-
text in [2], where the purpose was to study some rational functions introduced by Greene [7]. These
functions are indexed by posets and defined as sums over linear extensions of the indexing poset: as such,
they automatically verify cyclic inclusion-exclusion relations. This gives an efficient way to compute
these rational functions and a powerful tool to study them; see [2].

2 Preliminaries
2.1 Labelled and unlabeled graphs
Throughout the paper we work with simple directed graphs, both labeled and unlabeled.

Definition 2.1 A labeled (simple directed) graph G is a pair (V,E) where V is a finite set and E a subset
of V ×V . A directed cycle is a list (v1, . . . , vk) of vertices ofG such that (v1, v2), (v2, v3), · · · , (vk−1, vk)
and (vk, v1) are edges of G. A graph without directed cycles is called acyclic.

An unlabeled graph is an equivalence class of labeled graphs, with respect to the relabeling operation.

2.2 Quasi-symmetric functions
The ring of quasi-symmetric functions was introduced by I. Gessel [6] and may be seen as an extension
of symmetric functions. A modern introduction can be found in [11, Section 7.19].

Let n be a non-negative integer. A composition (or integer composition) of n is a list I = (i1, i2, . . . , ir)
of positive integers, whose sum is equal to n. The notation I � n means that I is a composition of n and
`(I) denotes the number of parts of I . In numerical examples, it is customary to omit parentheses and
commas. For example, 212 is a composition of 5.

Consider the algebra C[[X]] of formal power series in a totally ordered countable set of commutative
variables X = {x1, x2, . . . }. Monomials Xv = xv11 x

v2
2 · · · correspond to sequences v = v1, v2, . . . with

finitely many non-zero entries. For such a sequence, we denote by v← the finite list obtained by omitting
the zeroes in v.

Definition 2.2 A formal power series f ∈ C[[X]] is said to be quasi-symmetric if and only if
• there exists m such that each monomial with a nonzero coefficient in f has degree at most m;
• and, for any v and w such that v← = w←, the coefficients of Xv and Xw in P are equal.

One can easily prove that the set of quasi-symmetric functions is a subalgebra of C[[X]], called the
quasi-symmetric function ring and denoted QSym .

It should be clear that any symmetric function is quasi-symmetric. The algebra QSym of quasi-
symmetric functions has a basis of monomial quasi-symmetric functions (MI) indexed by compositions
I = (i1, . . . , ir), where

MI =
∑

k1<···<kr

xi1k1 · · ·x
ir
kr
. (2)

Example 2.3 M212 =
∑
k<l<m x

2
kxlx

2
m.
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2.3 Word quasi-symmetric functions
The natural non-commutative analog of QSym is the algebra of word quasi symmetric functions, denoted
by WQSym. We recall here its construction, following the presentation of Bergeron and Zabrocki
[1, Section 5.2]. An equivalent, but slightly different presentation, using packed words instead of set-
compositions, can be found in a paper of Novelli and Thibon [9, Section 2.1].

Consider a totally ordered countable alphabet of non-commuting variables A = {a1, a2, . . . }. We
denote by C〈〈A〉〉 the algebra of formal power series in the set of variablesA. Monomials inA are canon-
ically indexed by finite words w on the alphabet N as follows aw = aw1

aw2
. . . aw|w| . The evaluation

eval(w) of a word w is the integer sequence v = (v1, v2, . . . ), where vi is the number of letters i in w.
Then the commutative image of aw is Xeval(w).

In the non-commutative framework, set-compositions play the role of compositions. A set-composition
of n is a list I = (I1, . . . , Ip) of pairwise disjoint non-empty subsets of {1, . . . , n}, whose union is
{1, . . . , n} (in the literature, set-compositions are sometimes called ordered set partitions). In numerical
example, we sort integers inside a part and use a vertical line to separate the parts. For example, the
set-composition ({1, 5}, {3, 4, 6}, {2}) is denoted 15|346|2.

To a word w on the (ordered) alphabet N of length `, we associate the set-composition I = ∆(w) such
that j ∈ I|{wr:wr≤wj}| (for every j in [`]). In other words, I1 contains the positions of the smallest letter
in w, I2 the positions of the second smallest, and so on. For example, ∆(275525) = 15|346|2.

Definition 2.4 A formal power series f in C〈〈A〉〉 is a word quasi symmetric function if and only if
• there exists m such that each monomial with a nonzero coefficient in f has degree at most m;
• and the coefficients of av and aw in f are equal as soon as ∆(v) and ∆(w) coincide.

One can easily prove that the set WQSym of word quasi symmetric functions is an algebra. A linear
basis of WQSym is given as follows:

MI =
∑

w s.t.∆(w)=I

aw.

Note that sending the variables a1, a2, . . . to their commutative analogs x1, x2, . . . defines an algebra
morphism from WQSym to QSym .

Example 2.5 Consider the set-composition I = 25|4|13. Then the associated basis element of WQSym
is

MI =
∑

k<l<m

am ak am al ak.

Clearly, its commutative image is M212 (given in Example 2.3).

2.4 Gessel’s morphism
Definition 2.6 Let G be a graph on vertex set [n]. A function f : [n] → N is called G non-decreasing if,
for any edge (i, j) in E, one has f(i) ≤ f(j). For a labeled graph G, we define Γnc(G) as

Γnc(G) :=
∑

f:[n]→N
f G non-decreasing

af(1) . . . af(n).

Example 2.7 Consider the graph G =
3 1

2 4
, then Γnc(G) =

∑
k1,k2,k3,k4

k3≤k2, k1≤k2, k1≤k4

ak1ak2ak3ak4 .
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Gex =

4 6

2 1

3 7

5

Cex =

6

2 1

3

5

CIEGex,Cex =

4 6

2 1

3 7

5

−

4 6

2 1

3 7

5

−

4 6

2 1

3 7

5

−

4 6

2 1

3 7

5

+

4 6

2 1

3 7

5

+

4 6

2 1

3 7

5

+

4 6

2 1

3 7

5

−

4 6

2 1

3 7

5

Fig. 1: Graph Gex, cycle Cex and the graph algebra element CIEGex,Cex from Example 3.1.

It is clear that Γnc(G) is a word quasi-symmetric function. Therefore, Γnc extends to a linear map from
G to WQSym. The map Γ defined by Eq. (1) in the introduction and introduced by Gessel in [6] is a
quotient of Γnc, replacing the variables a1, a2, . . . by their commutative analogs x1, x2, . . .

Remark 2.8 The map Γnc, and hence its quotient Γ, are Hopf algebra morphisms (with a suitable Hopf
algebra structure on G). Indeed, this is the restriction to posets of the map Γ(1,1,1) introduced by Foissy
and Malvenuto in [5].

3 Cyclic inclusion-exclusion
3.1 Definition and example
Let G be a directed graph. Assume that, as an undirected graph, it contains a cycle C. Formally, such a
cycle C is a list C = (x1, . . . , xk) such that, for 1 ≤ i ≤ k, either (xi, xi+1) is an edge ofG, or (xi+1, xi)
is an edge of G (where, by convention, xk+1 := x1). In the first case, we say that (xi, xi+1) is in C+. In
the second case, we say that (xi, xi+1) is in C−.

Another description of the sets C+ and C− is the following. Edges of C have two orientations: their
orientation in the cycle C and their orientation as edges of G. We denote C+ (respectively C−) the set of
edges of C, for which these two orientations coincide (respectively do not coincide).

Finally, for a subset D of edges of G, we denote by G \D the (directed acyclic) graph obtained from
G by erasing the edges in D (and keeping the same set of vertices). Then, in the graph algebra G , we set

CIEG,C =
∑
D⊆C+

(−1)|D|G \D.

Example 3.1 Consider the graph Gex from Figure 1. The non-oriented version of Gex contains several
cycles, among them Cex = (6, 2, 3, 5, 1). This cycle is represented as a subgraph of Gex in Figure 1
with the two edge orientations described above. Then the set C+

ex is equal to {(6, 2), (2, 3), (3, 5)} and
CIEGex,Cex is given in Figure 1.

3.2 Cyclic inclusion-exclusion relations
Proposition 3.2 For any graph G and cycle C of G, one has:

Γnc(CIEG,C) = 0.
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Proof: Let n be the size of G. From the definitions, one has:

Γnc(CIEG,C) =
∑
D⊆C+

(−1)|D|

 ∑
f:[n]→N

f (G\D) non-decreasing

af(1) · · · af(n)


=

∑
f :[n]→N

(
af(1) · · · af(n)

) ∑
D⊆C+

(−1)|D|
[
f (G \D) non-decreasing

] ,

where [condition] is 1 if the condition is fulfilled and 0 else.
The idea of the proof is to show that for any function f : [n]→ N, one has∑

D⊆C+

(−1)|D|
[
f (G \D) non-decreasing

]
= 0. (3)

If f is not aG\C+ non-decreasing function, then each summand of (3) is zero and the conclusion holds
trivially in this case. Consider now a G\C+ non-decreasing function f : [n] → N. For such a function
f , we define Df =

{
(x, y) ∈ C+ s.t. f(x) > f(y)

}
. It is straightforward that Df fulfills the following

property:
∀D ⊆ C+, f is G \D non-decreasing⇐⇒ Df ⊆ D. (4)

Hence the left-hand side of (3) can be rewritten as
∑
Df⊆D⊆C+(−1)|D|, which is equal to zero if and only

if Df 6= C+. Therefore, we need to show that, for any G\C+ non-decreasing function, Df is strictly
included in C+.

We proceed by contradiction. Suppose that we can find a G\C+ non-decreasing function f for which
Df = C+. This means that, for each (x, y) in C+, one has f(x) > f(y). Besides, since f is a G\C+

non-decreasing function, one has f(x) ≤ f(y) for any edge (x, y) of G which is not in C+. Recall now
thatC is a cycle in the undirected version ofG. Formally, C is a list (x1, . . . , xk) such that, for 1 ≤ i ≤ k,
(by convention, xk+1 = x1)
• either (xi, xi+1) is an edge of G and (xi, xi+1) ∈ C+;
• or (xi+1, xi) is an edge of G and (xi, xi+1) ∈ C−.

Using the remarks above, we can conclude in both cases that f(xi) ≥ f(xi+1). Bringing everything
together,

f(x1) ≥ f(x2) ≥ · · · ≥ f(x` − 1) ≥ f(x`) ≥ f(x1).

As C+ cannot be empty (otherwise, (xk, . . . , x1) would be a directed cycle), at least one of these inequal-
ities should be strict. We have reached a contradiction and Df must be strictly included in C+, which
ends the proof of the proposition. 2

Proposition 3.2 gives some relations between the word quasi-symmetric functions Γnc(G). We call
these relations cyclic inclusion-exclusion relations (CIE relations for short). Formally, the elements
(CIEG,C) span a subspace of G , that we shall denote C , which is included in the kernel of Γnc.

We shall prove in the next section that any relation among the Γnc(G) can be deduced from CIE rela-
tions. In other words, the space C is exactly the kernel of Γnc. We will also prove a similar result for its
commutative quotient Γ.
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Remark 3.3 With the definition above, a cycle can go several times through the same vertex, or even
contain several copies of the same edge. We could also forbid this in the definition of cycles, the results of
the paper would be identical.

Remark 3.4 A weaker form of Proposition 3.2 (in the commutative setting) has been established in [2,
Theorem 4.1]. The structure of the proof is identical.

4 The kernel of Gessel’s morphism
4.1 The graphs GI

Definition 4.1 Let I = (I1, . . . , Ir) be a set-composition of [n]. We consider the directed graph GI with
vertex set [n] and edge set

⊔
j<k Ij × Ik. In other words, there is an edge between x and y if the index of

the set of I containing x is smaller than the one of the set-containing y.

Example 4.2 Take Iex = 15|346|2. Then GIex and the associated word quasi symmetric function are

GIex =

1 5

3 4 6

2

; Γnc(GIex) =
∑

k1,...,k6
max(k1,k5)≤min(k3,k4,k6)

max(k3,k4,k6)≤k2

ak1 · · · ak6 . (5)

4.2 A Z-basis of WQSym

The purpose of this Section is to prove that Γnc(GI) is a Z-basis of WQSym. The proof requires
to consider two additional bases of WQSym and to observe that three change of basis matrices are
unitriangular (with respect to different orders of the basis elements). It will be more convenient for us to
work with descent-starred permutations, instead of set-compositions.

Definition 4.3 We define a descent-starred permutation as a couple (σ,D) such that D is a subset of the
descent set {i;σ(i) > σ(i+ 1)} of the permutation σ. The descents in D are termed starred.

In numerical example, we represent a descent-starred permutation (σ,D) by the word notation of σ in
which the elements of index in D are followed by a star. For example the descent-starred permutation
(3142, {3}) will be denoted 314?2.

Lemma 4.4 Descent-starred permutations of n are in bijection with set-compositions of [n].

Proof: From the numerical notation of a set-composition I, we sort each part in decreasing order and
remove vertical bars to get the word notation of σ. Then mark with a star the descents inside the same part
of I. For example, the descent-starred permutation associated to 15|346|2 is 5?16?4?32. This is clearly a
bijection. 2

Let us define two families of word quasi-symmetric functions indexed by descent-starred permutations:
M(σ,D) and F(σ,D). Both are defined as a sum

∑
ak1 · · · akn over lists k = (k1, . . . , kn) of positive

integers with conditions given in the table below (for integers x in [n− 1]).

M(σ,D) F(σ,D)

x ∈ D kσ(x) = kσ(x+1) kσ(x) < kσ(x+1)

x /∈ D kσ(x) < kσ(x+1) kσ(x) ≤ kσ(x+1)
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Let us focus on M(σ,D) . We require that kσ(x) = kσ(x+1) for x ∈ D, which implies that the function
x 7→ kx should be constant on the parts of the associated set-composition I. Moreover, the conditions
kσ(x) = kσ(x+1) for x ∈ D and kσ(x) < kσ(x+1) for x /∈ D are equivalent to ∆(k) = I, so that we have
M(σ,D) = MI.

Remark 4.5 The commutative projection of F(σ,D) is FJ , where F is the fundamental basis of QSym
and J the (integer) composition associated with the set D (we use here the terminology of [11, Section
7.19]).

Lemma 4.6 The family (F(σ,D)), indexed by descent-starred permutations, is a Z-basis of WQSym.

Proof: Omitted: the argument relies on triangular changes of basis, introducing an intermediate family
(L(σ,D)). See the long version [4] for details. 2

We now explain how Γnc(GI) expands on the F basis. If I = (I1, . . . , Ir) is a set-composition, we
consider the following set DSP(I) of descent-starred permutations:
• As a word σ = w1 · · ·wr, where wm is a permutation of Im ;
• The descent in position x is starred if σx and σx+1 are in the same part of I. In other words, for

each m, we mark the descents in wm, but not the potential descent created by concatenating wm

and wm+1.
For example, take Iex = 15|346|2, then DSP(Iex) contains the following 12 descent-starred permutations:

153462, 5?13462, 154?362, 5?14?362, 156?4?32, 5?16?4?32, 1536?42, 5?136?42, 1546?32, 5?146?32, 156?342, 5?16?342.

Proposition 4.7 For any set-composition I, one has:

Γnc(GI) =
∑

(σ,D)∈DSP(I)

F(σ,D).

Proof: Let (σ,D) be a descent-starred permutation in DSP(I) and ak1 · · · akn a monomial in F(σ,D).
Consider j1 in Im and j2 in Im+1 for some m. By definition of DSP(I), clearly, j1 appears before j2 in
σ, which implies that kj1 ≤ kj2 . Therefore j 7→ kj is a GI non-increasing function and the monomial
ak1 · · · akn also appears in Γnc(GI).

Conversely, we have to prove that any monomial in Γnc(GI) appears in exactly one of the functions
F(σ,D), for (σ,D) in DSP(I). Let f be a GI non-decreasing function from [n] to N. We want to construct
(σ,D) in DSP(I) such that, for all x between 1 and n− 1, one has

f
(
σ(x)

)
≤ f

(
σ(x+ 1)

)
, with strict inequalities for x in D. (6)

By definition of DSP(I), σ should be a concatenation w1 · · ·wr, where each wm is a permutation of Im.
Moreover, the potential descent between wm and wm+1 is not starred. Since f is GI non-decreasing, the
inequality (6) holds when σ(x) and σ(x + 1) lie respectively in Im and Im+1 for some m (by definition
of DSP(I), in this case, x /∈ D). Therefore, we focus on the case where σ(x) and σ(x + 1) are in the
same part Im of I .

Let us consider the restriction fm of f to Im. We claim that there exists a unique word wm which is a
permutation of Im and such that fm(wmi ) ≤ fm(wmi+1), with strict inequality whenever i is a descent of
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wm. Indeed this word is obtained by ordering lexicographically the pairs
(
(fm(y), y)

)
y∈Im

and keeping
only the second element of each pair.

We mark the descents in wm and by concatenating all the words wm (for 1 ≤ m ≤ r), we get a
descent-starred permutation (σ,D) in DSP(I). By construction, this descent-starred permutation is the
unique one in DSP(I) such that af(1) · · · af(n) appears in F(σ,D), which ends the proof. 2

Example 4.8 Take Iex as in Example 4.2, Γnc(GIex) is given by Eq. (5). The summation set can be split as
follows:
• either k1 ≤ k5 or k5 < k1;
• besides, the integers k3, k4 and k6 fulfill exactly one of the 6 following inequalities:

k3 ≤ k4 ≤ k6, k4 < k3 ≤ k6, k3 ≤ k6 < k4,

k4 ≤ k6 < k3, k6 < k3 ≤ k4, k6 < k4 < k3.

Combining both case distinctions yield 12 different cases, and Γnc(GIex) is a sum of 12 different terms
which are the F functions indexed by the 12 descent-starred permutations in DSP(Iex) (which are listed
above).

Corollary 4.9 The family
(
Γnc(GI)

)
is a Z-basis of WQSym.

Proof: If (σ,D) is the descent-starred permutation associated by Lemma 4.4 to a set-composition I of n
of length r, then the size of D is n − r. Besides, for each element (σ′, D′) ∈ DSP(I), the size of D′ is
smaller than n− r, unless (σ′, D′) = (σ,D). Hence Proposition 4.7 implies that the matrix of Γnc(GI) in
the basis F(σ,D) is unitriangular with respect to the order (σ′, D′) <2 (σ,D)⇔ |D′| < |D| and Γnc(GI)
is a Z-basis of WQSym. 2

Remark 4.10 Stanley fundamental theorem on P -partitions [10, Theorem 6.2] implies that, if G is a
naturally labeled graph (i.e. such that (i, j) ∈ E implies i ≤ j as positive integers), then Γnc(G) has a
non-negative expansion on the F(σ,D) basis. Proposition 4.7 gives examples of non-necessarily naturally
labeled graphs G, such that the F(σ,D) expansion of Γnc(G) has non-negative coefficients. But this is not
the case for any graph G, as shown by the following example (we skip details in the computation):

Γnc
(

3

1
2

)
= F231 + F3?2?1 + F312 − L3?2?1 = F231 + F312 + F3?21 + F32?1 − F321.

Such negative signs do not occur in the commutative setting: indeed, any function Γ(G) is a non-negative
linear combination of fundamental quasi-symmetric functions, see [11, Corollary 7.19.5].

4.3 A generating family for the quotient
We will now show that (GI), where I runs over all set-compositions, spans the quotient G /C . Here is the
key combinatorial lemma in this section.

Lemma 4.11 Let G be an unlabeled acyclic directed graph. Then either G is equal to some GI or, in the
quotient G /C , one can write G as a linear combination of graphs with the same set of vertices and more
edges.
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G =

x

y

z

G0 =

x

y

z

G =

x

y

z

v1

vk

G0 =

x

y

z

v1

vk

Fig. 2: On the left (resp. right): graphs G and G0 in the first (resp. second) case of the proof of Lemma 4.11.

Proof: Let G be an acyclic directed graph with vertex set [n] and edge set EG. Throughout the proof, we
denote ∼ the following symmetric relation: x ∼ y if, in G, there is no directed path from x to y, nor from
y to x. When x ∼ y, the directed graphs G(x,y) and G(y,x) obtained from G by adding respectively an
edge from x to y or from y to x are still acyclic. We distinguish three cases.
Case 1: G is not the graph of a transitive relation.

In other words, there exist x, y and z such that
• there is an edge from x to y and from y to z in G;
• there is no edge from x to z.

We consider G0 = G(x,z) the graph obtained from G by adding an edge between x and z. As a directed
graph, G0 is acyclic: otherwise, there would be a path from z to x in G and, together with (x, y) and
(y, z), this path would be a directed cycle in G. But the non-oriented version of G0 contains a cycle
C = (x, z, y). Using the notation of Section 3.1, one has C+ = {(x, z)} and the corresponding cyclic
inclusion-exclusion element is CIEG0,C = G0 −G. Hence, in G /C , one has G = G0 and the statement
is true in this case.

This case is illustrated on the left-hand side of Figure 2 with examples of graphs G and G0. Dashed
edges are edges of G and G0 that do not play a role in the proof.
Case 2: the relation ∼ is not an equivalence relation.

By assumption, there exist vertices x, y, z such that
• there is a path (x, v1, · · · , vk, z) from x to z in G;
• one has x ∼ y and y ∼ z.

By definition of ∼, the graph G(x,y) is acyclic. Moreover, it does not contain a path from z to y. Indeed,
as y ∼ z in G, such a path should use the edge (x, y) and thus be the concatenation of a path from z to x
with the edge (x, y). But G does not contain a path from z to x (indeed, it contains a path from x to z and
no directed cycles).

Therefore, the graph G0 obtained from G(x,y) by adding an edge from y to z is an acyclic directed
graph. Then the undirected version of G0 contains a cycle C = (x, y, z, vk, · · · , v1). Using the notation
of Section 3.1, for this cycle, one has C+ = {(x, y), (y, z)}. Hence,

CIEG0,C = G0 −G0 \ {(x, y)} −G0 \ {(y, z)}+G0 \ {(x, y), (y, z)}.

But G0 \ {(x, y), (y, z)} is G, so, in the quotient G /C , one has

G = −G0 +G0 \ {(x, y)}+G0 \ {(y, z)}

and the statement is proved in this case.
This case is illustrated on the right-hand side of Figure 2 with examples of graphs G and G0. Here, the

dashed edge illustrates the fact that the length of the path P from x to z can be arbitrary. Potential extra
edges and vertices of G and G0 have not been represented for more readability.
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Case 3: G is the graph of a transitive relation and the relation ∼ is an equivalence relation.
In this case, we will prove that G is necessarily equal to GI, for some set-composition I. Let us start by

a remark: in the graph of a transitive relation, the existence of a path from x to y implies the existence of
an edge from x to y. Hence x � y means that there is either an edge from x to y or from y to x. Denote
by (Vj)j∈J the partition of the vertex set of G into equivalence classes of ∼. Consider two such classes
Vj and Vk. We will prove that either Vj × Vk or Vk × Vj is included in EG.

Select arbitrarily a pair (v0, w0) in Vj × Vk. As v0 � w0, by eventually swapping v0 and w0 (and
simultaneously j and k), we may assume that (v0, w0) is an edge of G. Then, for any w in Vk, the pair
(v0, w) is also an edge of G. Indeed, if this is not the case, since v0 � w, this would imply that (w, v0)
is an edge of V . But, then by transitivity, (w,w0) should be an edge of G, which is impossible since
w ∼ w0.

The same argument proves that, for any v in Vj , the pair (v, w) must be an edge of G, which proves the
inclusion of Vj × Vk in EG. As we may have swapped j and k after selecting v0 and w0, we have in fact
proved that for any pair (j, k) in J2, either Vj × Vk or Vk × Vj is included in EG. Since G does not have
any directed cycle, there exists a total order <J on J such that Vj × Vk is included in EG if and only if
j <J k.

By definition of ∼, there is no edges with both extremities in the same Vj . Besides, there can not be
an edge from Vk to Vj (with j <J k), as this would create a directed cycle of length 2. Finally, the set of
edges of G is exactly

⊔
j<Jk

Vj × Vk, which means that G = GI for I = (Vj)j∈J . 2

Let G be an acyclic directed graph. Iterating Lemma 4.11, one can write G as an integer linear combi-
nation of GI in the quotient space G /C (since we are working with simple graphs, this iteration always
terminates). In other words, GI spans the vector space G /C .

4.4 First main result
We are now ready to prove the following statement.

Theorem 1 The space C , spanned by cyclic inclusion-exclusion elements, is the kernel of the surjective
morphism Γnc from G to WQSym.

Proof: Denote by K the kernel of Γnc. By Proposition 3.2, it contains C . On one hand (Section 4.3), we
know that G /C is spanned by the family (GI). On the other hand (Corollary 4.9), the family Γnc(GI) is a
basis of WQSym, which implies in particular that the (GI) are linearly independent in G /K and hence
in G /C . Therefore (GI) is a basis of G /C and Γnc is an isomorphism from G /C to WQSym (it sends
a basis on a basis), which concludes the proof. 2

Remark 4.12 Note that the proof of Lemma 4.11 only uses cyclic inclusion-exclusion with |C+| = 1 or
|C+| = 2. Therefore, we have in fact proved a stronger result: the subspace of G spanned by cyclic
inclusion-exclusion associated to cycles C with |C+| = 1 and |C+| = 2 is the kernel of Γ (and hence
coincides with C ).

4.5 Unlabeled commutative framework and second main result
Consider an unlabeled directed graph G and a cycle C of the undirected version of G. As in Section 3.1,
we can define a cyclic inclusion-exclusion element in the unlabeled graph algebra G . Alternatively,
CIEG,C is the image of CIEG,C by the quotient morphism G → G .
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Let us consider the subspace C of G spanned by cyclic inclusion-exclusion elements.
Theorem 2 The ideal C , spanned by inclusion-exclusion elements, is the kernel of the surjective mor-
phism Γ from G to QSym .

Proof: This follows from Theorem 1, since QSym and G are quotients of WQSym and G , respectively,
and since the maps Γ and Γnc are compatible with the quotient structure; see the long version [4] for
details. 2

Remark 4.13 The function Γ
(
GI

)
in QSym depends only on the integer composition I obtained from

I by keeping only the sizes of the parts. Therefore, from Section 4.2, we know that the Z-span of this
family is QSym . As it is indexed by integer compositions, this family is a Z-basis of QSym . This family
has appeared in a paper of Stanley [12, Note p7] who noticed that the change of basis matrix with the
fundamental basis is unitriangular (commutative version of Proposition 4.7).
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