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Counting connected graphs with large excess

Élie de Panafieu†

Bell Labs France, Nokia

Abstract. We enumerate the connected graphs that contain a linear number of edges with respect to the number
of vertices. So far, only the first term of the asymptotics was known. Using analytic combinatorics, i.e. generating
function manipulations, we derive the complete asymptotic expansion.

Résumé. Nous énumérons les graphes connexes dont le nombre d’arêtes est proportionnel au nombre de sommets.
Jusqu’ici, seul le terme dominant de l’asymptotique était connu. En employant la combinatoire analytique, c’est-à-
dire des manipulations de séries génératrices, nous obtenons l’expansion asymtptotique complète.
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1 Introduction
We investigate the number CSGn,k of connected graphs with n vertices and n+ k edges. The quantity k,
defined as the difference between the numbers of edges and vertices, is the excess of the graph.

Related works Trees are the simplest connected graphs, and reach the minimal excess −1. They were
enumerated in 1860 by Borchardt, and his result, known as Cayley’s Formula, is CSGn,−1 = nn−2. Rényi
(1959) then derived the formula for CSGn,0, which corresponds to connected graphs that contain exactly
one cycle, and are called unicycles. Wright (1980), using generating function techniques, obtained the
asymptotics of connected graphs for k = o(n1/3). This result was improved by Flajolet et al. (2004), who
derived a complete asymptotic expansion for fixed excess.

Łuczak (1990) obtained the asymptotics of CSGn,k when k goes to infinity while k = o(n). Bender
et al. (1990) derived the asymptotics for a larger range, requiring only that 2k/n−log(n) is bounded. This
covers the interesting case where k is proportional to n. Their proof was based on differential equations
obtained by Wright, involving the generating functions of connected graphs indexed by their excesses.
Since then, two simpler proofs were proposed. The proof of Pittel and Wormald (2005) relied on the
enumeration of graphs with minimum degree at least 2. The second proof, derived by van der Hofstad
and Spencer (2006), used probabilistic methods, analyzing a breadth-first search on a random graph.

Erdős and Rényi (1960) proved that almost all graphs are connected when (2k/n − log(n)) tends to
infinity. As a corollary, the asymptotics of connected graphs with those parameters is equivalent to the
total number of graphs.
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Contributions In this article, we derive an exact expression for the generating function of connected
graphs (Theorem 3), tractable for asymptotics analysis. Our main result is the following theorem.

Theorem 1 When k/n has a positive limit and d is fixed, then the following asymptotics holds

CSGn,k = Dn,k

(
1 + c1n

−1 + · · ·+ cd−1n
−(d−1) +O(n−d)

)
,

where the dominant term Dn,k is derived in Lemma 6, and the (c`) are computable constants.

2 Notations and models
We introduce the notations adopted in this article, the standard graph model, a multigraph model better
suited for generating function manipulations, and the concept of patchwork, used to translate to graphs
the results derived on multigraphs.

Notations A multiset is an unordered collection of objects, where repetitions are allowed. Sets, or
families, are then multisets without repetitions. A sequence, or tuple, is an ordered multiset. We use
the parenthesis notation (u1, . . . , un) for sequences, and the brace notation {u1, . . . , un} for sets and
multisets. The cardinality of a set or multiset S is denoted by |S|. The double factorial notation for odd
numbers stands for

(2k − 1)!! =
(2k)!

2kk!
,

and [zn]F (z) denotes the nth coefficient of the series expansion of F (z) at z = 0.

Graphs We consider in this article the classic model of graphs, a.k.a. simple graphs, with labelled
vertices and unlabelled unoriented edges. All edges are distinct and no edge links a vertex to itself. We
naturally adopt for graphs generating functions exponential with respect to the number of vertices, and
ordinary with respect to the number of edges (see Flajolet and Sedgewick (2009), or Bergeron et al.
(1997)).

Definition 1 A graph G is a pair (V (G), E(G)), where V (G) is the labelled set of vertices, and E(G)
is the set of edges. Each edge is a set of two vertices from V (G). The number of vertices (resp. of edges)
is n(G) = |V (G)| (resp. m(G) = |E(G)|). The excess k(G) is defined as m(G)−n(G). The generating
function of a family F of graphs is

F (z, w) =
∑
G∈F

wm(G) z
n(G)

n(G)!
,

and Fk(z) denotes the generating function of multigraphs from F with excess k, Fk(z) = [yk]F (z/y, y).

As always in analytic combinatorics and species theory, the labels are distinct elements that belong to
a totally ordered set. When counting labelled objects (here, graphs), we always assume that the labels are
consecutive integers starting at 1. Another formulation is that we consider two objects as equivalent if
there exists an increasing relabelling sending one to the other.

With those conventions, the generating function of all graphs is

SG(z, w) =
∑
n≥0

(1 + w)(
n
2) z

n

n!
,
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because a graph with n vertices has
(
n
2

)
possible edges. Since a graph is a set of connected graphs, the

generating function of connected graphs CSG(z, w) satisfies the relation SG(z, w) = eCSG(z,w). We
obtain the classic closed form for the generating function of connected graphs

CSG(z, w) = log

(∑
n≥0

(1 + w)(
n
2) z

n

n!

)
.

This expression was the starting point of the analysis of Flajolet et al. (2004), who worked on graphs
with fixed excess. However, as already observed by those authors, it is complex to analyze, because of
“magical” cancellations in the coefficients. The reason of those cancellations is the presence of trees,
which are the only connected components with negative excess. In this paper, we follow a different
approach, closer to the one of Pittel and Wormald (2005): we consider cores, i.e. graphs with minimum
degree at least 2, and add rooted trees to their vertices. This setting produces all graphs without trees.

Multigraphs As already observed by Flajolet et al. (1989); Janson et al. (1993), multigraphs are better
suited for generating function manipulations than graphs. Exact and asymptotic results on connected
multigraphs are available in de Panafieu (2014). We propose a new definition for those objects, and link
the generating functions of graphs and multigraphs in Lemma 1. We define a multigraph as a graph
with labelled vertices, and labelled oriented edges, where loops and multiple edges are allowed. Since
vertices and edges are labelled, we choose exponential generating functions with respect to both quantities.
Furthermore, a weight 1/2 is assigned to each edge, for a reason that will become clear in Lemma 1.

Definition 2 A multigraph G is a pair (V (G), E(G)), where V (G) is the set of labelled vertices, and
E(G) is the set of labelled edges (the edge labels are independent from the vertex labels). Each edge
is a triplet (v, w, e), where v, w are vertices, and e is the label of the edge. The number of vertices
(resp. number of edges, excess) is n(G) = |V (G)| (resp. m(G) = |E(G)|, k(G) = m(G)− n(G)). The
generating function of the family F of multigraphs is

F (z, w) =
∑
G∈F

wm(G)

2m(G)m(G)!

zn(G)

n(G)!
,

and Fk(z) denotes the generating function [yk]F (z/y, y).

Figure 2 presents an example of multigraph. A major difference between graphs and multigraphs is the
possibility of loops and multiple edges.

Definition 3 A loop (resp. double edge) of a multigraphG is a subgraph (V,E) (i.e. V ⊂ V (G) andE ⊂
E(G)) isomorphic to the following left multigraph (resp. to one of the following right multigraphs).

11

21

1

2 21

1

2 21

1

2 21

1

2

The set of loops and double edges of a multigraph G is denoted by LD(G), and its cardinality by ld(G).

In particular, a multigraph that has no double edge contains no multiple edge. Multigraphs are better
suited for generating function manipulations than graphs. However, we aim at deriving results on the
graph model, since it has been adopted both by the graph theory and the combinatorics communities. The
following lemma, illustrated in Figure 1, links the generating functions of both models.
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Lemma 1 Let MG\LD denote the family of multigraphs that contain neither loops nor double edges,
and p the projection from MG\LD to the set SG of graphs, that erases the edge labels and orientations,
as illustrated in Figure 1. Let F denote a subfamily of MG\LD, stable by edge relabelling and change of
orientations. Then there exists a familyH of graphs such that p−1(H) = F . Furthermore, the generating
functions of F andH, with the respective conventions of multigraphs and graphs, are equal∑

G∈F

wm(G)

2m(G)m(G)!

zn(G)

n(G)!
=
∑
G∈H

wm(G) z
n(G)

n(G)!
.
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Fig. 1: A graph G and the set F of multigraphs sent by p (defined in Lemma 1) to the graph G. The generating
function of {G} (resp. F) is w2 z3

3!
(resp. 8 w2

222!
z3

3!
). As stated by Lemma 1, those generating functions are equal.

Patchworks To apply the previous lemma, we need to remove the loops and multiple edges from multi-
graph families. Our tool is the inclusion-exclusion technique, in conjunction with the notion of patchwork.

Definition 4 A patchwork with p parts P = {(V1, E1), . . . , (Vp, Ep)} is a set of p pairs such that
MG(P ) = (∪pi=1Vi,∪

p
i=1Ei) is a multigraph, and each (Vi, Ei) is either a loop or a double edge

of MG(P ), i.e. P ⊂ LD(MG(P )). The number of parts of the patchwork is |P |. Its number of ver-
tices n(P ), edges m(P ), and its excess k(P ) are the corresponding numbers for MG(P ). See Figure 2.
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Fig. 2: A patchwork P of excess 2, and the multigraph MG(P ). Observe that several patchworks can lead to the
same multigraph. Here, LD(MG(P )) 6= P , since the double edge ({1, 2}, {(2, 1, 1), (1, 2, 3)}) is missing from P .

In particular, all pairs (Vi, Ei) are distinct, MG(P ) has minimum degree at least 2, and two edges
in Ei, Ej having the same label must link the same vertices. We use for patchwork generating functions
the same conventions as for multigraphs introducing an additional variable u to mark the number of parts

P (z, w, u) =
∑

patchwork P

u|P |
wm(P )

2m(P )m(P )!

zn(P )

n(P )!
.

Lemma 2 The generating function of patchworks is equal to

P (z, w, u) =
∑
k≥0

Pk(zw, u)wk, where P0(z, u) = eu
z
2+u

z2

4 .
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For each k, there is a polynomial P ?k (z, u) such that Pk(z, u) = P0(z, u)P ?k (z, u).

Proof: A patchwork of excess 0 is a set of isolated loops and double edges (i.e. sharing no vertex with
another loop or double edge), which explains the expression of P0(z, u). Let P ?k denote the family of
patchworks of excess k that contain no isolated loop or double edge. Each vertex of degree 2 then belongs
to exactly one double edge and no loop. The number of such double edges is at most k, because each
increases the excess by 1. If we remove them, the corresponding multigraph has minimum degree at
least 3 and excess at most k. There is a finite number of such multigraphs (see e.g. Wright (1980)), so
the family P ?k is finite, and P ?k (z, u) is a polynomial. Since any patchwork of excess k is a set of isolated
loops and double edges and a patchwork from P ?k , we have Pk(z, u) = P0(z, u)P ?k (z, u). 2

3 Exact enumeration
In this section, we derive an exact expression for CSGk(z), suitable for asymptotics analysis. The proofs
rely on tools developed by de Panafieu and Ramos (2016); Collet et al. (2016).

Theorem 2 The generating function of cores, i.e. graphs with minimum degree at least 2, is

Core(z, w) =
∑
m≥0

(2m)![x2m]P (zex, w,−1)ez(e
x−1−x) wm

2mm!
.

Proof: Let MCore denote the set of multicores, i.e. multigraphs with minimum degree at least 2, and set

MCore(z, w, u) =
∑

multicoreG

uld(G) wm(G)

2m(G)m(G)!

zn(G)

n(G)!
,

where ld(G) denotes the number of loops and double edges in G. According to Lemma 1, we have
Core(z, w) = MCore(z, w, 0). To express the generating function of multicores, the inclusion-exclusion
method (see (Flajolet and Sedgewick, 2009, Section III.7.4)) advises us to consider MCore(z, w, u + 1)
instead. This is the generating function of the set MCore? of multicores where each loop and double edge
is either marked by u or left unmarked. The set of marked loops and double edges form, by definition,
a patchwork. One can cut each unmarked edge into two labelled half-edges. Observe that the degree
constraint implies that each vertex outside the patchwork contains at least two half-edges. Reversely, as
illustrated in Figure 3, any multicore from MCore? can be uniquely build following the steps:

1. start with a patchwork P , which will be the final set of marked loops and double edges,
2. add a set of isolated vertices,
3. add to each vertex a set of labelled half-edges, such that each isolated vertex receives at least two

of them. The total number of half-edges must be even, and is denoted by 2m,
4. add to the patchwork them edges obtained by linking the half-edges with consecutive labels (1 with

2, 3 with 4 and so on).
Observe that a relabelling of the vertices (resp. the edges) occurs at step 2 (resp. 4). This construction
implies, by application of the species theory (Bergeron et al. (1997)) or the symbolic method (Flajolet and
Sedgewick (2009)), the generating function relation

MCore(z, w, u+ 1) =
∑
m≥0

(2m)![x2m]P (zex, w, u)ez(e
x−1−x) wm

2mm!
.
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Fig. 3: Left, a multigraph from MCore? (the marked loops and double edges are bold). Right, the corresponding
multigraph with labelled half-edges, build in step 3 of the proof of Theorem 2.

For u = −1, we obtain the expression of Core(z, w) = MCore(z, w, 0). 2

Any graph where no component is a tree can be built starting with a core, and replacing each vertex
with a rooted tree. The components of smallest excess, zero, are then the unicycles. The difference with
the multi-unicycles – connected multigraphs of excess 0 – is that the cycle can then be a loop or a double
edge. We recall the classic expressions of their generating functions (see Flajolet and Sedgewick (2009)).

Lemma 3 The generating functions of rooted trees, multi-unicycles, and unicycles are characterized by

T (z) = zeT (z), MV (z) =
1

2
log
( 1

1− T (z)

)
, V (z) = MV (z)− 1

2
T (z)− 1

4
T (z)2.

We apply the previous results to investigate graphs where all components have positive excess, i.e. that
contain neither trees nor unicycles. This is the key new ingredient in our proof of Theorem 1.

Lemma 4 The generating function of graphs with excess k where each component has positive excess is

SG>0
k (z) =

k∑
`=0

(2(k − `)− 1)!![x2(k−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−`+1/2
.

It is coefficient-wise smaller than

MG>0
k (z) = (2k − 1)!![x2k]

e−MV (z)(
1− T (z) e

x−1−x
x2/2

)k+1/2
.

Proof: In the expression of the generating function of cores, after developing the exponential as a sum
over n and applying the change of variable m← k + n, we obtain

Core(z, w) =
∑
k≥0

[x2k]P (zex, w,−1)

(∑
n≥0

(2(k + n))!

2k+n(k + n)!

(
zw ex−1−x

x2

)n
n!

)
wk.

The sum over n is replaced by its closed form

Core(z, w) =
∑
k≥0

[x2k]P (zex, w,−1)
(2k − 1)!!(

1− zw ex−1−x
x2/2

)k+1/2
wk.

Lemma 2 is applied to expand P (zex, w,−1). The generating function of cores of excess k is then

Corek(z) = [yk] Core(z/y, y) =

k∑
`=0

(2(k − `)− 1)!![x2(k−`)]
P`(ze

x,−1)(
1− z ex−1−xx2/2

)k−`+1/2
.
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If we do not remove the loops and double edges, we obtain the generating function MCorek(z) of mul-
ticores of excess k. In the generating function, this means replacing P (zex, w,−1) with the constant 1,
so P` vanishes except for ` = 0, and

MCorek(z) = (2k − 1)!![x2k]
1(

1− z ex−1−xx2/2

)k+1/2
.

A core of excess k where the vertices are replaced by rooted trees can be uniquely decomposed as a set of
unicycles, and a graph of excess k where each component has a positive excess, so

Corek(T (z)) = eV (z) SG>0
k (z), MCorek(T (z)) = eMV (z) MG>0

k (z).

This leads to the results stated in the lemma, after division by eV (z) (resp. eMV (z)). According to
Lemma 1, the generating function MG>0(z, w) of multigraphs where all components have positive excess
dominates coefficient-wise SG>0(z, w), so MG>0

k (z) = [yk] MG>0(z/y, y) dominates coefficient-wise
SGk(z). 2

Either by calculus – as a corollary of the previous lemma – or by a combinatorial argument, we obtain
the following result, first proven by Wright (see also (Janson et al., 1993, Lemma 1 p.33)), and that was a
key ingredient of the proofs of Bender et al. (1990); Flajolet et al. (2004).

Lemma 5 For each k > 0, there exists a computable polynomial Qk such that

SG>0
k (z) =

Qk(T (z))

(1− T (z))3k
.

Observe that this result is only useful for fixed k. We finally prove an exact expression for the number
of connected graphs, which asymptotics is derived in Section 4.

Theorem 3 For k > 0, the number of connected graphs with n vertices and excess k is

CSGn,k = n![zn] CSGk(z) =

k∑
q=1

(−1)q+1

q

∑
k1+···+kq=k
∀j, 1≤kj≤k−q+1

n![zn]

q∏
j=1

SG>0
kj

(z).

Proof: Each graph in SG>0 is a set of connected graphs with positive excess, so∑
`≥0

SG>0
` (z)y` = e

∑
k>0 CSGk(z)y

k

.

Observe that SG>0
0 (z) = 1. Indeed, the only graph of excess 0 where all components have positive excess

is the empty graph (this can also be deduced by calculus from Lemma 4). Taking the logarithm of the
previous expression and extracting the coefficient [yk], we obtain

CSGk(z) = [yk] log

(
1 +

∑
`≥1

SG>0
` (z)y`

)
,

which leads to the result by expansion of the logarithm and extraction of the coefficient [zn]. Observe
that q ≤ k because each kj is at least 1, and kj ≤ k − q + 1 for the same reason. 2
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4 Asymptotics of connected graphs
In this section, we prove Theorem 1, deriving CSGn,k up to a multiplicative factor (1+O(n−d)), where d
is an arbitrary fixed integer. Our strategy is to express CSGn,k as a sum of finitely many non-negligible
terms, which asymptotic expansions are extracted using a saddle-point method. We will see that in the
expression of CSGn,k from Theorem 3, the dominant contribution comes from q = 1, i.e., applying
Lemma 4,

CSGn,k ∼ n![zn] SG>0
k (z) =

k∑
`=0

n!(2(k − `)− 1)!![znx2(k−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−`+1/2
.

In this expression, the dominant contribution will come from ` = 0. This means that a graph with n
vertices, excess k, and without tree or unicycle components, is connected with high probability – a fact
already proven by Erdős and Rényi (1960) and used by Pittel and Wormald (2005). Furthermore, its
loops and double edges are typically disjoint, hence forming a patchwork of excess 0. We now derive the
asymptotics Dn,k of this dominant term, and will use it as a reference, to which the other terms will be
compared.

Lemma 6 When k/n tends toward a positive constant, we have the following asymptotics

n!(2k − 1)!![znx2k]
P0(T (z)ex,−1)e−V (z)(
1− T (z) e

x−1−x
x2/2

)k+1/2
∼ nn+k√

2πn

(
eλ/2 − e−λ/2

λ1+k/n

)n
(eλ − 1− λ)e−(1+ k

2n )λ√
λ
2 (e2λ − 1− 2λeλ)

,

where the right-hand side is denoted by Dn,k, and λ is the unique positive solution of λ2
eλ+1
eλ−1 = k

n + 1.
In particular, introducing the value ζ characterized by T (ζ) = λ

eλ−1 , we have

Dn,k = Θ

(
1

k

n!(2k − 1)!!(
1− T (ζ) e

λ−1−λ
λ2/2

)k
ζnλ2k

)
.

Proof: Injecting the formulas for P0(z, u) and V (z) derived in Lemmas 2, 3, the expression becomes

n!(2k − 1)!![znx2k]A(z, x)B(z, x)k,

withB(z, x) =
(
1−T (z) e

x−1−x
x2/2

)−1
andA(z, x) = e−

T (z)ex

2 −T (z)2e2x

4 +
T (z)

2 +
T (z)2

4

√
(1− T (z))B(z, x).

We recognize the classic large powers setting, and a bivariate saddle-point method (see e.g. Bender and
Richmond (1999)) is applied to extract the asymptotics, which implies the second result of the lemma:

n!(2k − 1)!![znx2k]A(z, x)B(z, x)k ∼ n!(2k − 1)!!
A(ζ, λ)

2πk
√

det(H(ζ, λ))

B(ζ, λ)k

ζnλ2k

where ζ, λ and the 2× 2 matrix (Hi,j(z, x))1≤i,j≤2 are characterized by the equations

ζ∂ζB(ζ, λ)

B(ζ, λ)
=
n

k
,

λ∂λB(ζ, λ)

B(ζ, λ)
= 2, Hi,j(e

t1 , et2) = ∂ti∂tj log
(
B(et1 , et2)

)
.

The first result follows by application of the Stirling formula and expansion of the expression. 2

In the expression of CSGn,k from Theorem 3, the product over j has the following simple bound.
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Lemma 7 When k/n tends to a positive constant, for any integer composition k1 + · · ·+kq = k, we have

n![zn]

q∏
j=1

SG>0
kj

(z) =

∏q
j=1(2kj − 1)!!

(2k − 1)!!
O(kDn,k),

where the big O is independent of q.

Proof: According to Lemma 4, we have

n![zn]

q∏
j=1

SG>0
kj

(z) ≤ n![zn]

q∏
j=1

MG>0
kj

(z) =

q∏
j=1

n!(2kj − 1)!![znx2kj ]
e−MV (z)(

1− T (z) e
x−1−x
x2/2

)kj+1/2
.

Applying a classic bound (see e.g. (Flajolet and Sedgewick, 2009, Section VIII.2)), we obtain for all j

[znx2kj ]
e−MV (z)(

1− T (z) e
x−1−x
x2/2

)kj+1/2
≤ e−MV (ζ)(

1− T (ζ) e
λ−1−λ
λ2/2

)kj+1/2
ζnλ2kj

.

Taking the product over j and using the facts k1 + · · ·+ kq = k and e−MV (ζ) < 1 leads to

n![zn]

q∏
j=1

SG>0
kj

(z) ≤
n!
∏q
j=1(2kj − 1)!!(

1− T (ζ) e
λ−1−λ
λ2/2

)k+1/2
ζnλ2k

.

The result follows, as a consequence of the bound derived in Lemma 6. 2

We now identify, in the expression of CSGn,k from Theorem 3, some negligible terms.

Lemma 8 For any fixed d (resp. fixed d and q), the following two terms are O(k−dDn,k)

k∑
q=d+3

(−1)q−1

q

∑
k1+···+kq=k
∀j, 1≤kj≤k−q+1

q∏
j=1

n![zn] SG>0
kj

(z),
∑
j≥0

∑
k1+···+kq=k

∀j, 1≤kj≤k−d−1−j

q∏
j=1

n![zn] SG>0
kj

(z).

Proof: According to Lemma 7, it is sufficient to prove that the sequence

Sq,d,k =
∑

k1+···+kq=k
∀j, 0≤kj≤k−d

∏q
j=1(2kj − 1)!!

(2k − 1)!!

satisfies, for any fixed d (resp. when d and q are fixed),

k∑
q=d+3

1

q
Sq,q−1,k = O(k−d−1) and

∑
j≥0

Sq,d+1+j,k = O(k−d−1).

The complete proof is omitted in this short version. The two main ingredients are that the argument of
the sum defining Sq,d,k is maximal when one of the kj is large (then the others remain small), and that
Sq,0,k ≤ 4q for all q ≤ k (proof by recurrence). 2

Using the previous lemma, we remove the negligible terms from CSGn,k and simplify its expression.
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Lemma 9 There exist computable polynomials Rq,r such that, when k/n has a positive limit,

CSGn,k =

d+1∑
q=1

(−1)q−1
d∑

r=q−1
n![zn] SG>0

k−r(z)
Rq,r(T (z))

(1− T (z))3r
(
1 +O(k−d)

)
. (1)

Proof: The previous lemma proves that in the expression of CSGn,k from Theorem 3, we need only
consider the terms corresponding to q ≤ d + 2, and k − d ≤ maxj(kj) ≤ k. Since k1 + · · · + kq = k,
when k is large enough and d is fixed, there is at most one kj between k − d and k. Up to a symmetry of
order q, we can thus assume kq = maxj(kj), and introduce r = k − kq

CSGn,k =

d+2∑
q=1

(−1)q−1
d∑

r=q−1
n![zn] SG>0

k−r(z)
∑

k1+···+kq−1=r
∀j, kj≥1

q−1∏
j=1

SG>0
kj

(z)
(
1 +O(k−d)

)
,

where the term q = d+ 2 is 0. According to Lemma 5, there exist computable polynomials (Qk)k≥1 such
that

∑
k1+···+kq−1=r
∀j, kj≥1

q−1∏
j=1

SG>0
kj

(z) =
∑

k1+···+kq−1=r
∀j, kj≥1

q−1∏
j=1

Qkj (T (z))

(1− T (z))3kj
=

∑
k1+···+kq−1=r
∀j, kj≥1

∏q−1
j=1 Qkj (T (z))

(1− T (z))3r
,

and the numerator is the polynomial Rq,r evaluated at T (z). 2

The next lemma proves that the terms corresponding to patchworks with a large excess are negligible.

Lemma 10 When k/n has a positive limit and q, r are fixed, then n![zn] SG>0
k−r(z)

Rq,r(T (z))
(1−T (z))3r is equal to

d−1∑
`=0

n!(2(k − r − `)− 1)!![znx2(k−r−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−r−`+1/2

Rq,r(T (z))

(1− T (z))3r
(
1 +O(k−d)

)
.

Proof: In this short version, we only present the proof of the equality

n![zn] SG>0
k (z) =

d−1∑
`=0

n!(2(k − `)− 1)!![znx2(k−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−`+1/2

(
1 +O(k−d)

)
.

This corresponds to the case q = 1 and r = 0 of the lemma, the general proof being identical. Given a
finite family F of multigraphs, let IE<d(F) denote the bounded inclusion-exclusion operator

IE<d(F) =
∑
G∈F

∑
P⊂LD(G), k(P )<d

(−1)|P |.

Let MG>0
n,k denote the set of multigraphs with n vertices, excess k, without tree or unicycle component.

Its subset MG>0
n,k,<d (resp. MG>0

n,k,≥d) corresponds to multigraphs G with maximal patchwork LD(G) of
excess less than d (resp. at least d). Given the decomposition MG>0

n,k = MG>0
n,k,<d ]MG>0

n,k,≥d, we have

IE<d(MG>0
n,k) = IE<d(MG>0

n,k,<d) + IE<d(MG>0
n,k,≥d). (2)
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Working as in the proof of Lemma 4, we obtain

IE<d(MG>0
n,k) =

d−1∑
`=0

n!(2(k − `)− 1)!![znx2(k−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−`+1/2
.

Since (2(k−`)−1)!! = Θ(k−`(2k−1)!!), applying the same saddle-point method as in Lemma 6, the `th
term of the sum is a Θ(k−`Dn,k). By inclusion-exclusion IE<d(MG>0

n,k,<d) = SG>0
n,k so, injecting those

results in Equation (2),

SG>0
n,k =

d−1∑
`=0

n!(2(k − `)− 1)!![znx2(k−`)]
P`(T (z)ex,−1)e−V (z)(

1− T (z) e
x−1−x
x2/2

)k−`+1/2
− IE<d(MG>0

n,k,≥d).

We now bound | IE<d(MG>0
n,k,≥d)|. Any multigraph from MG>0

n,k,≥d contains, as a subgraph, a patchwork
of excess d. Thus, |MG>0

n,k,≥d | is bounded by the number of multigraphs from MG>0
n,k where a patchwork

of excess d is distinguished. If, in any such multigraph, we mark another patchwork of excess less than d
– which might well intersect the patchwork previously distinguished – we obtain the bound

| IE<d(MG>0
n,k,≥d)| ≤

d−1∑
`=0

n!(2(k − d− `)− 1)!![znx2(k−d)]
Pd(T (z)ex, 2)P`(T (z)ex, 1)(
1− T (z) e

x−1−x
x2/2

)k−d−`+1/2
,

where the second argument of Pd is a 2, because each loop and double edge of the distinguished patchwork
can be either marked or left unmarked. By the same saddle-point argument, this is a O(k−dDn,k). 2

Combining Lemmas 9 and 10, CSGn,k is expressed as a sum of finitely many terms (since d is fixed)

CSGn,k =

d+1∑
q=1

(−1)q−1
d∑

r=q−1

d−1∑
`=0

n!(2(k−r− `)−1)!![znx2k]Aq,r,`(z, x)B(z, x)k
(
1+O(k−d)

)
, (3)

where B(z, x) =
(
1 − T (z) e

x−1−x
x2/2

)−1
and Aq,r,`(z, x) = x2(r+`)P`(T (z)ex,−1)e−V (z)(

1−T (z) e
x−1−x
x2/2

)−r−`+1/2

Rq,r(T (z))
(1−T (z))3r . Since

(2(k − r − `)− 1)!! = Θ(k−r−`(2k − 1)!!), applying the same saddle-point method as in Lemma 6, we
obtain that the summand corresponding to q, r, ` is a Θ(k−r−`Dn,k). Hence, Dn,k is the dominant term
in the asymptotics of CSGn,k. We can be more precise in our estimation of each summand. Its coefficient
extraction is expressed as a Cauchy integral on a torus of radii (ζ, λ) (from Lemma 6),

[znx2k]Aq,r,`(z, x)B(z, x)k =
1

(2π)2

∫ π

θ=−π

∫ π

ϕ=−π
Aq,r,`(ζe

iθ, λeiϕ)
B(ζeiθ, λeiϕ)k

ζneniθλe2kiϕ
dθdϕ,

and its asymptotic expansion follows, by application of (Pemantle and Wilson, 2013, Theorem 5.1.2)

n!(2(k − r − `)− 1)!![znx2k]Aq,r,`(z, x)B(z, x)k = k−r−`Dn,k

(
b0 + · · ·+ bd−1n

−d−1 +O(n−d)
)
,

where the (b`) are computable constants, and the factorials have been replaced by their asymptotic expan-
sions. Injecting those expansions in Equation (3) concludes the proof of Theorem 1.
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