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New hook-content formulas for strict
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Abstract. We introduce the difference operator for functions defined on strict partitions and prove a polynomiality
property for a summation involving the bar length (hook length) and content statistics. As an application, several new
hook-content formulas for strict partitions are derived.

Résumé. Nous introduisons l’opérateur de différence pour les fonctions définies sur les partitions strictes et démontrons
qu’une somme en fonction des équerres et des contenus est un polynôme. En particulier, nous obtenons plusieurs nou-
velles formules des équerres et des contenus pour les partitions strictes.
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1 Introduction
The basic knowledge on partitions, Young tableaux and symmetric functions could be found in [20].
For the usual partitions, it is well known (cf. [9]) that complex irreducible characters of the alternating
group An and the symmetric group Sn are determined by partitions of size n. Also, a famous result in
representation of finite groups, Nakayama Conjecture, says that two irreducible characters of Sn lie in
the same p-block if and only if their corresponding partitions have the same p-core. Strict partitions are
also closely related to the representation of finite groups. For example, the irreducible spin characters
of the covering groups of the alternating group An and the symmetric group Sn are determined by strict
partitions with size n (see [17]).

In this paper, we focus on strict partitions. A strict partition is a finite strict decreasing sequence
of positive integers λ̄ = (λ̄1, λ̄2, . . . , λ̄`). The integer |λ̄| =

∑
1≤i≤` λ̄i is called the size of the strict

partition λ̄ and `(λ̄) = ` is called the length of λ̄. For convenience, let λ̄i = 0 for i > l(λ̄). A strict
partition λ̄ could be identical with its shifted Young diagram, which means that the i-th row of the usual
Young diagram is shifted to the right by i boxes. Therefore the leftmost box in the i-th row has coordinate
(i, i+ 1). For the (i, j)-box in the shifted Young diagram of the strict partition λ̄, we can associate its bar
length (in some other papers, it is also called hook length), denoted by h̄(i,j), which is the number of boxes
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exactly to the right, or exactly above, or the box itself, plus λ̄j . For example, consider the box 2 = (1, 3)
in the shifted Young diagram of the strict partition (7, 5, 4, 1). There are 1 and 5 boxes above and to the
right of the box 2 respectively. Since λ̄3 = 4, the bar length of 2 is equal to 1 + 5 + 1 + 4 = 11, as
illustrated in Figure 1. The content of 2 = (i, j) in the shifted Young diagram is defined to be c̄2 = j− i,
so that the leftmost box in each row has content 1. Also, let H̄(λ̄) be the multiset of bar lengths of boxes
and H̄λ̄ be the product of all bar lengths of boxes in λ̄.

12 11 8 7 5 4 1

9 6 5 3 2

5 4 2 1

1

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3 4

1

Fig. 1: The shifted Young diagram, the bar lengths and the contents of the strict partition (7, 5, 4, 1).

Our goal is to find some formulas involving bar lengths and contents for strict partitions, also called
hook-content formulas for strict partitions, by analogy with that for usual partitions. For the usual partition
ν, it is well known that (see [3, 10, 20])

fν =
|ν|!
Hν

and
1

n!

∑
|ν|=n

f2
ν = 1, (1)

where Hν denotes the product of all hook lengths of boxes in ν and fν denotes the number of standard
Young tableaux of shape ν. The first author conjectured [4] that

P (n) =
1

n!

∑
|ν|=n

f2
ν

∑
2∈ν

h2k
2

is always a polynomial in n for any k ∈ N, which was generalized and proved by Stanley [18], and later
generalized in [7] (see also [2, 5, 8, 14, 15]).

For two strict partitions λ̄ and µ̄, we write λ̄ ⊇ µ̄ if λ̄i ≥ µ̄i for any i ≥ 1. In this case, the skew strict
partition λ̄/µ̄ is identical with its skew shifted Young diagram. For example, the skew strict partition
(7, 5, 4, 1)/(4, 2, 1) is represented by the white boxes in Figure 2. Let f̄λ̄ (resp. f̄λ̄/µ̄) be the number of
standard shifted Young tableaux of shape λ̄ (resp. λ̄/µ̄). The following are well-known formulas (see
[1, 17, 21]) analogous to (1):

f̄λ̄ =
|λ̄|!
H̄λ̄

and
1

n!

∑
|λ̄|=n

2n−`(λ̄)f̄2
λ̄ = 1. (2)

In this paper, we generalize the latter equality of (2) by means of the following results.

Theorem 1.1 Suppose that Q is a given symmetric function and µ̄ is a given strict partition. Then

P (n) =
∑
|λ̄/µ̄|=n

2n−`(λ̄)f̄λ̄/µ̄

H̄λ̄

Q
((c̄2

2

)
: 2 ∈ λ̄

)
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Fig. 2: The skew shifted Young diagram of the skew strict partition (7, 5, 4, 1)/(4, 2, 1).

is a polynomial in n, where Q(
(
c̄2
2

)
: 2 ∈ λ̄) means that |λ̄| of the variables are substituted by

(
c̄2
2

)
for

2 ∈ λ̄, and all other variables by 0.

Theorem 1.2 Suppose that k is a given nonnegative integer. Then we have

∑
|λ̄|=n

2n−`(λ̄)f̄λ̄
H̄λ̄

∑
2∈λ̄

(
c̄2 + k − 1

2k

)
=

2k

(k + 1)!

(
n

k + 1

)
.

When k = 0 we derive the latter identity of (2). When k = 1, Theorem 1.2 becomes

∑
|λ̄|=n

2n−`(λ̄)f̄λ̄
H̄λ̄

∑
2∈λ̄

(
c̄2
2

)
=

(
n

2

)
,

which could also be obtained by setting µ̄ = ∅ in the next theorem.

Theorem 1.3 Let µ̄ be a strict partition. Then we have

∑
|λ̄/µ̄|=n

2n−`(λ̄)+`(µ̄)f̄λ̄/µ̄H̄µ̄

H̄λ̄

(∑
2∈λ̄

(
c̄2
2

)
−
∑
2∈µ̄

(
c̄2
2

))
=

(
n

2

)
+ n|µ̄|. (3)

The proofs of those theorems are given in Section 4, by using the difference operator technique.

2 The difference operator for strict partitions
For each strict partition λ̄, the symbol λ̄+ (resp. λ̄−) always represents a strict partition obtained by adding
(resp. removing) a box to (resp. from) λ̄. In other words, |λ̄+/λ̄| = 1 and |λ̄/λ̄−| = 1. By analogy with
the difference operator for usual partitions introduced in [7], we define the difference operator for strict
partitions by

D
(
g(λ̄)

)
:=

∑
`(λ̄+)>`(λ̄)

g(λ̄+) + 2
∑

`(λ̄+)=`(λ̄)

g(λ̄+) − g(λ̄),

where λ̄ is a strict partition and g is a function of strict partitions. Notice that #{λ̄+ : `(λ̄+) > `(λ̄)} =
0 or 1.

For each skew strict partition λ̄/µ̄, let f ′λ̄/µ̄ := 2|λ̄|−|µ̄|−`(λ̄)+`(µ̄)f̄λ̄/µ̄. We obtain the following two
lemmas.
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Lemma 2.1 For two different strict partitions λ̄ ⊇ µ̄ we have

f ′λ̄/µ̄ =
∑

λ̄−:
λ̄⊇λ̄−⊇µ̄
`(λ̄−)<`(λ̄)

f ′λ̄−/µ̄ + 2
∑

λ̄−:
λ̄⊇λ̄−⊇µ̄
`(λ̄−)=`(λ̄)

f ′λ̄−/µ̄.

Lemma 2.2 For each strict partition µ̄ and each function g of strict partitions, let

A(n) :=
∑
|λ̄/µ̄|=n

f ′λ̄/µ̄g(λ̄)

and

B(n) :=
∑
|λ̄/µ̄|=n

f ′λ̄/µ̄Dg(λ̄).

Then

A(n) = A(0) +

n−1∑
k=0

B(k).

By induction and Lemma 2.2 we obtain the following result.

Theorem 2.3 Let g be a function of strict partitions and µ̄ be a given strict partition. Then we have

∑
|λ̄/µ̄|=n

f ′λ̄/µ̄g(λ̄) =

n∑
k=0

(
n

k

)
Dkg(µ̄) (4)

and

Dng(µ̄) =

n∑
k=0

(−1)n+k

(
n

k

) ∑
|λ̄/µ̄|=k

f ′λ̄/µ̄g(λ̄). (5)

In particular, if there exists some positive integer r such that Drg(λ̄) = 0 for every strict partition λ̄, then
the left-hand side of (4) is a polynomial in n with degree at most r − 1.

Example. Let g(λ̄) = 1/H̄λ̄. Then Dg(λ̄) = 0 by Theorem 3.3. The two quantities defined in Lemma
2.2 are:

A(n) =
∑
|λ̄/µ̄|=n

f ′λ̄/µ̄

H̄λ̄

and B(n) = 0.

Consequently, ∑
|λ̄/µ̄|=n

2n−`(λ̄)+`(µ̄)f̄λ̄/µ̄

H̄λ̄

=
1

H̄µ̄
. (6)

In particular, µ̄ = ∅ implies ∑
|λ̄|=n

2n−`(λ̄)f̄2
λ̄ = n!. (7)
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3 Corners of strict partitions
For a strict partition λ̄, the outer corners are the boxes which can be removed to get a new strict partition
λ̄−. Let (α1, β1), . . . , (αm, βm) be the coordinates of outer corners such that α1 > α2 > · · · > αm. Let
yj = βj − αj be the contents of outer corners for 1 ≤ j ≤ m. We set αm+1 = 0, β0 = `(λ̄) + 1 and call
(α1, β0), (α2, β1), . . . , (αm+1, βm) the inner corners of λ̄. Let xi = βi − αi+1 be the contents of inner
corners for 0 ≤ i ≤ m (see Figure 3). The following relation of xi and yj are obvious.

x0 = 1 ≤ y1 < x1 < y2 < x2 < · · · < ym < xm. (8)

Notice that x0 = y1 = 1 if and only if λ̄`(λ̄) = 1.

·
·

·
·

·

·

(αm, βm)

(α2, β2)

(α1, β1)

Fig. 3: A strict partition and its corners. The outer corners are labelled with (αi, βi) (i = 1, 2, . . . ,m). The inner
corners are indicated by the dot symbol “·”.

For arbitrary two finite alphabets A and B, the power sum of the alphabet A−B is defined by [11, p.5]

Ψk(A,B) :=
∑
a∈A

ak −
∑
b∈B

bk (9)

for each integer k ≥ 0. And for each partition ν = (ν1, ν2, . . . , ν`(ν)), we define

Ψν(A,B) :=

`(ν)∏
j=1

Ψνj (A,B). (10)

Let λ̄ be a strict partition. Motivated by the work of Olshanski [13] we define

Φν(λ̄) := Ψν
(
{
(
xi
2

)
}, {
(
yi
2

)
}
)
. (11)

First we consider the difference between the bar length sets of λ̄ and λ̄+ = λ̄
⋃{2} for some box 2.

Theorem 3.1 Suppose that λ̄+ = λ̄
⋃{2} such that c̄2 = xi. If i = 0, then

H̄λ̄

H̄λ̄+

=

∏
1≤j≤m

((
x0

2

)
−
(
yj
2

))
∏

1≤j≤m

((
x0

2

)
−
(
xj
2

)) .
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If 1 ≤ i ≤ m, then

H̄λ̄

H̄λ̄+

=
1

2
·

∏
1≤j≤m

((
xi
2

)
−
(
yj
2

))
∏

0≤j≤m
j 6=i

((
xi
2

)
−
(
xj
2

)) .

Suppose that a0 < a1 < · · · < am and b1 < · · · < bm are real numbers.

Theorem 3.2 Let k be a nonnegative integer. Then there exist some ξν ∈ Q such that

∑
0≤i≤m

∏
1≤j≤m

(ai − bj)∏
0≤j≤m
j 6=i

(ai − aj)
aki =

∑
|ν|≤k

ξνΨν({ai}, {bi})

for arbitrary real numbers a0 < a1 < · · · < am and b1 < b2 < · · · < bm.

By Theorem 3.2, when k = 0, 1, 2, we obtain

∑
0≤i≤m

∏
1≤j≤m

(ai − bj)∏
0≤j≤m
j 6=i

(ai − aj)
= 1, (12)

∑
0≤i≤m

∏
1≤j≤m

(ai − bj)∏
0≤j≤m
j 6=i

(ai − aj)
ai = Ψ1({ai}, {bi}), (13)

∑
0≤i≤m

∏
1≤j≤m

(ai − bj)∏
0≤j≤m
j 6=i

(ai − aj)
a2
i =

Ψ(1,1)({ai}, {bi}) + Ψ2({ai}, {bi})
2

. (14)

By Theorems 3.1 and 3.2 we find a formula to compute D
( g(λ̄)
H̄λ̄

)
.

Theorem 3.3 Suppose that g is a function of strict partitions. Then

D
(g(λ̄)

H̄λ̄

)
=

∑
`(λ̄+)>`(λ̄)

g(λ̄+)− g(λ̄)

H̄λ̄+

+ 2
∑

`(λ̄+)=`(λ̄)

g(λ̄+)− g(λ̄)

H̄λ̄+

for every strict partition λ̄.

Let λ̄i+ = λ̄
⋃{2i} such that c2i = xi for 1 ≤ i ≤ m. If y1 > 1, let λ̄0+ = λ̄

⋃{20} such
that c20

= x0 = 1. We obtain the following result for Φk(λ̄i+) and Φk(λ̄).
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Theorem 3.4 Let k be a given nonnegative integer and λ̄ be a strict partition. Then there exist some
ξj ∈ Q such that

Φk(λ̄i+)− Φk(λ̄) =

k−1∑
j=0

ξj

(
xi
2

)j
for every strict partition λ̄.

By Theorem 3.4 we can show that D
(Φν(λ̄)

H̄λ̄

)
could be written as a linear combination of some Φδ(λ̄)

H̄λ̄
for some partitions δ.

Theorem 3.5 Let ν = (ν1, ν2, . . . , ν`) be a partition. Then there exist some ξδ ∈ Q such that

D
(Φν(λ̄)

H̄λ̄

)
=

∑
|δ|≤|ν|−1

ξδ
Φδ(λ̄)

H̄λ̄

(15)

for every strict partition λ̄.

4 Proofs of Theorems
Instead of proving Theorem 1.1, we prove the following more general result, which implies Theorem 1.1
when ν = ∅.
Theorem 4.1 Suppose that ν = (ν1, ν2, . . . , ν`) is a given partition, µ̄ is a given strict partition and Q is
a symmetric function. Then there exists some r ∈ N such that

Dr
(Q((c̄22 ) : 2 ∈ λ̄

)
Φν(λ̄)

Hλ̄

)
= 0

for every strict partition λ̄. Consequently,

P (n) =
∑
|λ̄/µ̄|=n

2n−`(λ̄)+`(µ̄)f̄λ̄/µ̄

H̄λ̄

Q
((c̄2

2

)
: 2 ∈ λ̄

)
Φν(λ̄)

is a polynomial in n.

Proof (sketch): By linearity we assume that

Q
((c̄2

2

)
: 2 ∈ λ̄

)
=

s∏
t=1

∑
2∈λ̄

(
c̄2
2

)rt
for some tuple (r1, r2, . . . , rs). Then by Theorems 3.2, 3.4 and 3.5 we can show that

H̄λ̄D
(Φν(λ̄)

∏s
t=1

∑
2∈λ̄

(
c̄2
2

)rt
H̄λ̄

)



642 Guo-Niu Han and Huan Xiong

could be written as a linear combination of some Φν
′
(λ̄)
∏s′

t′=1

∑
2∈λ̄

(
c̄2
2

)r′
t′ satisfying one of the fol-

lowing two conditions:
(1) s′ < s;
(2) s′ = s and |ν′| ≤ |ν| − 1.

Then the claim follows from induction on s and |ν|. 2

Proof of Theorem 1.2: The special case of the proof of Theorem 4.1 with ν = ∅ and s = 1 yields

H̄λ̄D
(∑

2∈λ̄
(
c̄2
2

)r1
H̄λ̄

)
=

∑
0≤i≤m

∏
1≤j≤m

((
xi
2

)
−
(
yj
2

))
∏

0≤j≤m
j 6=i

((
xi
2

)
−
(
xj
2

)) (xi
2

)r1

=
∑
|ν|≤r1

ξνΦν(λ̄),

where ξν are some constants. The last equality is due to Theorem 3.2. Notice that

(2k)!

(
z + k − 1

2k

)
= 2k

k∏
i=1

((z
2

)
−
(
i

2

))
.

Then by Theorems 3.5 and 2.3 we know that

P (n) =
∑
|λ̄|=n

f ′λ̄
H̄λ̄

∑
2∈λ̄

(
c̄2 + k − 1

2k

)
is a polynomial in n with degree at most k + 1.

On the other hand,

P (k + 1) =
f ′(k+1)

H̄(k+1)

(
2k

2k

)
=

2k

(k + 1)!

since (k + 1) is the only strict partition with size k + 1 who has contents greater than k. Moreover, It is
obvious that P (0) = P (1) = · · · = P (k) = 0. Since the polynomial P (n) is uniquely determined by
those values, we obtain P (n) = 2k

(k+1)!

(
n
k+1

)
. 2

From Theorem 4.1, the left-hand side of (3) in Theorem 1.3 is a polynomial in n. To evaluate this
polynomial explicitly, we need the following lemma.

Lemma 4.2 Let λ̄ be a strict partition. Then Φ1(λ̄) = |λ̄|.
Proof of Theorem 1.3: By Corollary 3.3, Theorem 3.1 and Identity (13) it is easy to see that

H̄λ̄D
(∑

2∈λ̄
(
c̄2
2

)
H̄λ̄

)
=

∑
`(λ̄+)>`(λ̄)

H̄λ̄

H̄λ̄+

( ∑
2∈λ̄+

(
c̄2
2

)
−
∑
2∈λ̄

(
c̄2
2

))
+ 2

∑
`(λ̄+)=`(λ̄)

H̄λ̄

H̄λ̄+

( ∑
2∈λ̄+

(
c̄2
2

)
−
∑
2∈λ̄

(
c̄2
2

))
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=
∑

0≤i≤m

∏
1≤j≤m

((
xi
2

)
−
(
yj
2

))
∏

0≤j≤m
j 6=i

((
xi
2

)
−
(
xj
2

))(xi
2

)

= Φ1(λ̄)

= |λ̄|.

Therefore we have

H̄λ̄D
2
(∑

2∈λ̄
(
c̄2
2

)
H̄λ̄

)
= 1,

H̄λ̄D
3
(∑

2∈λ̄
(
c̄2
2

)
H̄λ̄

)
= 0.

Then our claim follows from Theorem 2.3. 2

Similarly, by (12), (13) and (14) we have

H̄λ̄D
(∑

2∈λ̄
(
c̄2+1

4

)
H̄λ̄

)
=

1

12

(
Φ2(λ̄) + |λ̄|2 − 2|λ̄|

)
,

H̄λ̄D
2
(∑

2∈λ̄
(
c̄2+1

4

)
H̄λ̄

)
=

2

3
|λ̄|,

H̄λ̄D
3
(∑

2∈λ̄
(
c̄2+1

4

)
H̄λ̄

)
=

2

3
,

H̄λ̄D
4
(∑

2∈λ̄
(
c̄2+1

4

)
H̄λ̄

)
= 0.

Thus by Theorem 2.3 we obtain the following result.

Theorem 4.3 Let µ̄ be a strict partition. Then

∑
|λ̄/µ̄|=n

2n−`(λ̄)+`(µ̄)fλ̄/µ̄H̄µ̄

H̄λ̄

(∑
2∈λ̄

(
c̄2 + 1

4

)
−
∑
2∈µ̄

(
c̄2 + 1

4

))
=

2

3

(
n

3

)
+

2

3
|µ̄|
(
n

2

)
+

1

12

(
Φ2(µ̄) + |µ̄|2 − 2|µ̄|

)
n.
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