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Some results on counting roots of
polynomials and the Sylvester resultant.

Michael Monagan and Baris Tuncer

Department of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 156, CANADA.

Abstract. We present two results, the first on the distribution of the roots of a polynomial over the ring of integers
modulo n and the second on the distribution of the roots of the Sylvester resultant of two multivariate polynomials.
The second result has application to polynomial GCD computation and solving polynomial diophantine equations.

Résumé. Nous présentons deux résultats: le premier concerne la distribution des racines d’un polyndme sur 1’anneau
des entiers modulo n et le deuxieéme concerne la distribution des racines du déterminant de Sylvester de deux
polyndmes multivariés. Ceci est utile pour le calcul de PGCD et la résolution des équations diophantiennes poly-
nomiales.
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1 Introduction

Let IF,, denote the finite field with ¢ elements and let Z,, denote the ring of integers modulo n. Let E[X]
denote the expected value of a random variable X and let Var[X] denote the variance of X.

Let f be a polynomial in F,[z] of a given degree d > 0 and let X be the number of distinct roots of f.
Schmidt proves in Ch. 4 of [9] that E[X] = 1 and for d > 1, Var[X] = 1 — 1/q. This result has been
generalized by Knopfmacher and Knopfmacher in [S] who count distinct irreducible factors of a given
degree of f. The two main results presented in this paper are Theorems 1 and 2 below.

Theorem 1 Let ¢p(n) = |{1<i<n:ged(i,n) = 1}| denote Euler’s totient function. Let X be a random
variable which counts the number of distinct roots of a monic polynomial in Z,,[x] of degree m > 0. Then
(a) E[X]=1 and
(b) if m = 1 then Var[X]| = 0, otherwise Var[X]| = ded#n % (%) = Zd‘n % (2).
In particular, if n = p* where p is a prime number and k > 1, Var[X] = k(1 — 1/p).

n—ia

Theorem 2 Let f, g be polynomials in Fy[z,y] of the form f = cp,a™ + Z?;ol =0

dpx™ + 21161 E;":_OZ di;x'y? with ¢, # 0 and d,,, # 0, thus of total degree n and m respectively. Let
X be a random variable that counts the number of vy € ¥y such that ged(f(x,v),g(x,v)) # 1. Ifn >0
and m > 0 then

(a) E[X]=1 and
(b) Var[X]=1-1/q.
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Theorems 1 and 2 were found by computation. We give some details on our computations later in
the paper. To prove the results we use a generalization of the Inclusion Exclusion principle (Proposition
1) which allows us to determine E[X] and Var[X] without having explicit formulas for Prob[X = E].
Before proving these results we connect Theorem 2 with the Sylvester resultant and with polynomial GCD
computation and with solving polynomial diophantine equations.

Let F be a field and let A and B be polynomials in F'[zg,x1, ..., Z,] with positive degree in xy. The
Sylvester resultant of A and B in z, denoted res, (A, B), is the determinant of Sylvester’s matrix. We
gather the following facts about it into Lemma 1 below. Proofs may be found in Ch. 3 of [3]]. Note, in the
Lemma deg A denotes the total degree of A.

Lemma 1 Let R = res,, (A, B)

(i) R is a polynomial in F[x1, ..., x,] (2 is eliminated),
(ii) deg R < deg Adeg B (Bezout bound).

For A and B monic in xg and o € F™

(iii) gcd(A(zo, ), B(zg, ) # 1 <= resy, (A(zo, ), B(zg,®)) = 0 and
(iv) resg, (A(zo, @), B(xo, @) = R(«).

Properties (iii) and (iv) connect the roots of the resultant with Theorem 2 and 3.

1.1 Polynomial GCD computation and polynomial diophantine equations.

Our motivation comes from the following problems in computer algebra. Let A, B be polynomials in
Zlxg, 21, ..., 2,) and G = ged(A, B). Thus A = GA and B = GB for some polynomials A and B
called the cofactors of A and B. Modular GCD algorithms compute G modulo a sequence of primes
P1,P2,D3, ... and recover the integer coefficients of G using Chinese remaindering. The fastest algo-
rithms for computing G modulo a prime p interpolate G from univariate images. Maple, Magma and
Mathematica all currently use Zippel’s algorithm (see [L1 4]). Let us write

k l m
A= g a;xy, B = E bizy, and G = E CiTyH
i=0 i=0 i=0

where the coefficients a;, b;, ¢; € Fy[z1,...,7,]. Zippel’s algorithm picks points a; € F, computes
monic univariate images of G
gi = ged(A(wo, ai), B(wo, ai)),

scales them (details omitted), then interpolates the coefficients ¢;(x1, ..., z,) of G from the coefficients
of these (scaled) images.

What if gcd(A(xo, aj), B(zo, o)) # 1 for some j? For example, if A=a22+zyand B = a2+ xy+
(21 — 1) then ged(A, B) = 1 but ged(A(zo, 1, B), B(zo, 1, 8)) # 1 forall 8 € F,. The evaluation points
(1, 5) are said to be unlucky. We cannot use the images gcd(A(zo, 1, 8), B(xo, 1, 3)) to interpolate G.
The same issue of unlucky evaluation points arises in our current work in [6] where, given polynomials
a,b,c € Zlxg, x1, ..., 2, with ged(a, b) = 1 we want to solve the diophantine equation oca + 7b = ¢ for
o and 7 in Z[xo, z1, . . . , T,) by interpolating o and 7 modulo a prime p from univariate images.

What is the maximum number of unlucky evaluation points that can occur? And what is the expected
number of unlucky evaluation points? We answer the first question for A and B monic in xg. Lemma 1
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implies «v; is unlucky if and only if R(ca;) = 0 where R = res, (A,B) € Fylz1,...,z,). If a; is chosen
at random from [} then applying the Schwarz-Zippel lemma (see [10]) we have

Prob| R(a;) — 0] < 281

p
Applying Lemma 1(ii) we have deg R < deg A deg B < deg A deg B. So if the algorithm needs, say, ¢
images to interpolate G modulo p, then we can avoid unlucky evaluation points with high probability if
we pick p > t deg Adeg B.

But this is an upper bound — a worst case bound for the GCD algorithm. Researchers in computer
algebra have observed that unlucky evaluation points are rare in practice and that we “never see them”
when testing algorithms on random inputs. Theorems 2 and 3 give first results on the distribution of
unlucky evaluation points. In particular, for coprime A and B of positive degree, Theorem 3 (page 11)
implies Prob[ ¢ is unlucky | < 1/p.

2 Results and Proofs

Given a set U and the finite collection of sets I' = {A;,7 = 0,...,n — 1} where each A; C U, let us
define Cy = U, Cpi1 ;=0 and, for 1 < k < n,

Cro=|J (A,n4,---n4,).
i< <ip
Then for 1 < k < n, C} is the union of all possible intersections of the k—subsets of the collection I" .
In particular C; = AgUA 1 U---UA,_1andC,, = AgN A3 N---NA,_1. Let By, := C — Cj4 for
0 < k < n. Observe that Cy, D Cl41, 30 | Bk| = |Ck| — |Ck+1]. Let us also define

by = |Bk| and ¢t 1= Z |AZ1 ﬂAi2~-~ﬂAik|.

i< <lip

We have t; = Z?;OI |Ailand ty = 3700 |AiNA;|. We also have by, =, and b, = tn—1—()bn.

Now AgMA;N---NA,_qisasubsetof (,",) = (5) sets of the form A;, N A;, N---NA;,_, and each
(n—1)-section A;, NA;,N---NA;,_, isasubsetof ("~1) = ("]") sets of the form A;, N A;,N---NA

with iy < i < -+ <ip_o. Therefore by,_o = tn—2 — ("] )bnu-1 — (3)by.

in—2

Similarly, since each (n — k + 4)-section is a subset of ("‘f“) intersections of (n — k) sets for
i =1,...,k, we have the recursive formula
M n—k+i
but = tute — . by psi for k=0,... n. 1
k k ( ; > k+i for n ey

i=1

Lemma 2 Following the notation introduced above

k .
bn—k = Z(—l)i (n - k - Z) tn_kyi for k=0,...,n. )

7
=0
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Proof: We will prove the claim by strong induction on k. For £ = 0 we have b,, = t,,. Now assume that
the claim is true for any integer ¢ < k in place of k.
By the recursive formula (T) we have

n—k n—k+1 n
b—(i41) = tn—rrn) = ("7 )onok = (" ) onokar = = ()b
On the other hand by induction we have the following equations

b, =tn
bn—l =tp_1— (?)tn
bp—g =tp_2 — (nzl)tnfl + (g)tn

bnfkr = tnfk - (n_llc_‘_l)tnkarl +--- 4+ (_1)k(2)tn

It follows that

_(k%ll) bn = _(kj—_ll)t” »

L G L e [ SR

_(Zfl)bnf2 = _(:71)%*2 + (271) (nl )tnfl - (271) (g)tn

_(n;k)bnik _ _(n;k-)tnik + (n;k) (n_lf+1)tn—k+1 . (_1)k+1 (n;k) (Z)tn
If we sum all these equalities, then on the right hand side the coefficient of £,, is

e(tn) = Xio(=DF (") (i) For d < k one has

(k:il)(:;) = (nfkfll)?(i)idﬂ)! (nfncé)!d! = (k+1)!(217k71)! d!((kkjle)rll)! = (kil) (k:;l)

Then c(t,) = (,1,) Simp (D (1) = — (1) (CDF = CDF (L),

where the last equality follows from the fact that

(51 = (1) + () o+ CDRO) = ()M = (-F

Similarly for s = 1,...,k we have c(t,—) = i o (—1)F=s =1 ("2 ()

= (p) s (DR () = (GO ()

Now plugging s = k — i in the formula above we get

bty = Yimo (=D (L b D

Proposition 1 Following the same notation one has for 1 <k <mn,
S ik = Zle ik [Z?Zi(—l)j_i (jii)tj] , In particular:
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(a) 0 yibi = t1 = S0 |Ai| (Inclusion Exclusion Principle) and
(b) S0 i%bi =ty + 2ty = 30 A + 230, 1Ai N Ay,

Proof: According to Lemma 2 we have

b, =1tn
bp—1 =tp_1 — (Tll)tn
bp—g =tp_2 — (n;l)tn71 + (g)tn

b=t — (s + (Yat o+ (1) (D) b+ (172,

n—2

by =t — (f)tg + (3)153 + (g)t4 N (_1)n72 (nfl)tn_l + (_1)7171( n )tn

n—2 n—1

If we sum Z?:l i*b;, then for 1 < s < n, the coefficient of ¢, on the right hand side is
ots) = 3711 (,2;) (=1)° "

We claim that ¢(t,) = 0 for k < s <n. We prove this by strong induction on k. For k=1 we have
c(ts) = i i) (1) = () (- = s () ()

Since s > 2, by substitutingm =s—1>1landj=i—1

Clts) = s Xy (M) (~1)7 = s(1— 1) = 0.

S

Now assume Y7 i'(,°,

)(=1)*""=0forany 1 <! <kandl+1<s < n.Then

T, () )

Substitutingm =s—1>1>1and j = ¢ — 1 we obtain

ofts) = im (1) (=)

=30 s (T (-1
m . . 'm o m k 1 im .
C(ts) = 32]‘:0(] + 1)k(])(_1)m J — SZ]’:O Zl:O (Ilc)jl(j)(_l)m j
k m .l (m m—i
S () S () (1)
Since m = s — 1 > I, we have m > [ + 1 and by induction hypothesis each summand
S () (1) = T ) =0

Hence ¢(ts) = 0. On the other hand for 1 < s < k the coefficient of each ¢® on the right hand side
is Z?Zi(—l)j - (]]_ Z) t;. Hence we have the result. In particular, for £ = 2 the non-zero terms on the
right-hand-side are t; — (i) to + 22ty =ty + 2to. O
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Theorem 1 Ler ¢p(n) = |{1<i<n: ged(i,n) = 1}| denote Euler’s totient function. Let X be a random
variable which counts the number of distinct roots of a monic polynomial in Z.,[x] of degree m > 0. Then

(a) E[X] =1 and

(b) if m = 1then Var[X]| = 0, otherwise Var[X]| = Zd‘n dsn g (%)= Zd\n dn1¢( )-
In particular, if n = p* where p is a prime number and k > 1, Var[X] = k(1 — 1/p).

Remark 1. We found this result by direct computation and using the Online Encylopedia of Integer
Sequences (OEIS) see [[7]]. For polynomials of degree 2,3,4,5 in Z,, [x] we computed E[X] and Var[X] for
n = 2,3,4,...,20 using Maple and found that E[X] = 1 in all cases. Values for the variance are given
in the table below.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(131 $ 381t BRI BE 2o
an) |1 2 4 4 9 6 12 12 17 10 28 12 25 30 32

When we first computed Var[X] we did not recognize the numbers. Writing Var[X] = a(n)/n we

computed the sequence for a(n) (see the table) and looked it up in the OEIS. We found it is sequence
A006579 and that a(n) = 22;11 ged(n, k). The OEIS also has the formula a(n) = 3~ ,,(d — 1)é(%).

Proof: Let A; be the set of all monic univariate polynomials of degree m > 0 which have a root at
«; € Zy. Then since x — «; is monic, for any f € A; we have f = (z — «;)q for a unique g € Z,,[z] and
we have n™~! choices for such an f. Hence |A;| = n™~ 1.

Let 2; := Prob[X = ]. This is the probability that f has exactly ¢ distinct roots, i.e. f € B; in the
notation introduced in section 1 considering the finite collection of sets I' = {4;,i = O ,n— 1}
Since we have n™~! choices for a monic polynomial of degree m in Z,, [x] we have x; = nm . Then by
Proposition 1

N b b AL S et et
=D imi=) i = - = = =1

nm nm nm nm

To prove (b), if m = 1 then f = = — « for some a € Z,, and hence X = 1 and Var[X] = 0. For
m > 1and « € Z7, our first aim is to find |Ag N A, |. Let f € Ag N A,. It may not be the case that f =
x(z — a)q for a unique g € Z,[x], since Zy[z] is not a unique factorization domain in general. However
f = zq1 = (x—a)qo for unique q1, g2 € Zy[x]. It follows that ag2(0) = 0 mod n. If ged(a, n) = d then
ged(%,2) = 1 and hence g2(0) = 0 mod %. The general form of g3 = 2™~ + ap, 2™ % 4 -+ 4 ag
where a; € Z,, fori = 0,...,m — 2. Since ¢2(0) = ag mod 4, there are d choices for ag and hence
there are dn™~?2 choices for qo. Therefore |Ag N A, | = dn™ 2.

For a given pair (vy, 5) with 8 > ~, to compute | A, N Ag|, define @ := 5 —  and consider Ay N A,.
If f € A, N Ag, then we have f(z) = (x — v)gs(z) = (x — S)qu(x) for unique ¢3,q4 € Zy[z]. By
the coordinate translation  — = + v we have f(xz 4+ v) € Ag N A,, since f(z + ) = zqs(z +7) =
(x — a)qa(x + v) where f(x + ), g3(x + ), ga(x + 7) are monic and with the same degree before the
translation. This correspondence is bijective and it follows that |A, N Ag| = |49 N As| = dn™ 2.

Let d = ged(a,n). There are k = ¢(7) elements 3y, ..., By in Z=n such that ged(B3;, 5) = 1. If we
define o := df3; € Z, then ged(a;,n) = d. For, if s = ged(aj,n) and d|s then s|o; = s|dB; = 5[B;
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and 5|5 = $Slged(B;,%) = 5|1 = s = d. Now, for each j consider the n — «; pairs of the form
(4,4 o) where i = 0,...,n — a; — 1. We have [4; N A1 q,| = [Ao N Ay, | and

k k

k
Z A, NAg| = Z(n —aj)|Ag N Ay, | = Z(n —a;)dn™ % =dn™? Zn -
j=1

B>v,d=ged(B—,n) Jj=1 Jj=1

where d = ged(ay,n) and k = ¢(%). Since ged(n, o) = d <= ged(n,n — a;) = d we have
k k
dj=1n—aj =3 _;aj Then

k k k
2205]»:20@—!—271—0(] Zn—kn— nn = Za]—
j=1 j=1 j=1

It follows that

k k
m— m— n. n m—
E |A, N Ag| = dn™? E n—a;=dn™? E aj:§¢(a)dn 2,

B>7,d=gcd(B—,n) j=1 j=1

Then by Proposition 1 it follows that

Var[X] = E[X?]-E[X]*=-12+E[X?]
" "L, b S i%b;
_ 2, -2 Vv i=0 v
= 71+;lef 1+;Z vl 1+7nm
-1
_ . s [Ail +230, 1A Ay
nm
- 14 nn™1 N 2 dndstn Fo(G)dn™?
nm nm
n, n d, n
= 2 —$(=)dn"? = Zo(=).
> 5¢(5)dn > o)
d|n d#n d|n d#n
Also, since by Gauss’ Lemma de #(%) = n we have
d—1 n d, n 1 n
> —oly) = > —o(5) - EZ¢(3)
d|n d|n d|n
d, n 1 d n
s+ 3 So-on= 3 S
d|n,d#n d|n,d#n
To prove the last claim, let n = p* where p is a prime number and k& > 1. Then
d n k— p pk k—1
Y. o) = Z o) =Y p TR p = 1) = k(1 - 1/p).
d|n,d#n nd 5=0 p P s=0
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Theorem 2 Let f, g be polynomials in Fy|x,y] of the form f = c,a™ + Z?;OI ;;S
dmax™ + Z;Z_Ol Z:n:_ol di;x'y? with ¢, # 0 and d,,, # 0, thus of total degree n and m respectively. Let
X be a random variable that counts the number of vy € Fq such that ged(f(x,v), g(x,v)) # 1. Ifn >0
and m > 0 then

(a) E[X] =1and

(b) Var[X] =1 - 1/q.

cijxtyl and g =

Remark 2. We found this result by computation. For quadratic polynomials f, g of the form f =
22+ (ar1y+az)r+azy?® +asy+as and g = 22+ (b1y+ba)x +b3y? +bay+bs over finite fields of size ¢ =
2,3,4,5,8,9,11 we generated all ¢*° pairs and computed X = |{a € F, : ged(f(z, ), g(z, o)) # 1}].
Magma code for F, is given in Appendix A. We repeated this for cubic polynomials and some higher
degree bivariate polynomials for ¢ = 2,3 to verify that E[X] = 1 and Var[X] = 1 — 1/q holds more
generally. For yet higher degree polynomials we used random samples. That E[X] = 1 independent of
the degrees of f and g was a surprise to us. We had expected a logarithmic dependence on the degrees of
fandg.

Proof: Without loss of generality we may assume f and g are monic in x because ged(f (z,7), g(z,7)) =
1 < ged(c, f(x,7),d, g(z, 7)) = 1. For v € F,, let us define A, as the set of polynomial pairs
(f,9) € Fylx,y]* where f, g are monic in = with total degrees, deg(f) = n > 0 and deg(g) = m > 0
such that ged(f(z,v), g(x,7)) # 1. Our first aim is to compute | Ag|.

Let (f,g) € Ap. Since f and g are monic in z, f(x,0),g(x,0) are monic polynomials of degree
n and m respectively in F,[z]. We have finitely many choices, say s, for non-relatively prime monic
polynomial pairs (h;(x),l;(z)) with deg(h;) = n and deg(l;) = m with i = 1,...,s in F,[z]?. Let
(f(x,0),9(z,0)) = (hi(x),l;(x)) for some fixed i where 1 < i < s. In fact s = (¢"¢™)/q = ¢" ™1,
since there are ¢"¢™ possible choices for monic polynomial pairs (h,!) in F4[z] with deg(h) = n,
deg(!) = m and the probability of a given monic pair is non-relatively prime over Fy[z] is 1/¢ (see [8, 2]
and also [1]] for an accessible proof).

Let f(x,y) = 2" + chm1(y)z™ ' + - + c1(y)z + co(y) where ca(y) € Fyly] of total degree

deg(cn_a(y)) < dandlet ¢, _a(y) = alPyd + - + 0™ where o™ € F,.

Let h;(z) = 2" —i-a(i) "l —i-a(()i) with ag) €F,for0 <v<n-—1 Thenforl <d <n,we

n—1

= a(()”_d) = agf)_ g4+ It follows that there are g® choices for such ¢n—d(y) and hence there

have ¢,,—4(0)
are ¢'q? - - - ¢" = ¢"("*t1)/2 choices for such f(z,%). Similarly there are ¢"™("+1)/2 choices for g(z, ).
Let us denote these numbers as D = ¢"("*1/2 and R = ¢™("+1)/2 Since we have s choices for 7,
|Ag| = sDR.

On the other hand for a given v € Fy if (f(z,v), 9(z,y)) € Ao then (f(z,y —7),9(z,y — 7)) € A,,
since f(x,y — ) is again a bivariate polynomial which is a monic polynomial in z of total degree n
and g(x,y — 7y) is again a bivariate polynomial which is monic polynomial in z of total degree m. This
correspondence (coordinate transformation) is bijective. Hence for any v € F,, one has |A,| = sDR.

For a general polynomial f(z,y) € Fy[z,y] which is monic in z and of total degree n > 0, one has
¢?q* - "' = ¢" D choices. Similarly for a general polynomial g(z,y) € F,[z,y] which is monic in z
and of total degree m > 0, one has ¢2¢> - - - ¢! = ¢™ R choices and therefore there are ¢"+t™ DR pairs
(f, g) which are monic in x with total degrees deg(f) = n and deg(g) = m.

Let x; := Prob[X = 4]. This is the probability that ged(f(z,7), g(z,7)) # 1 for exactly 4 different
~v’sin Fy, i.e. the probability that (f, g) € B; in the notation introduced in section 1 considering the finite
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collection of sets ' = { A,y € F, }. Hence x; = Then by Proposition 1

n+7n DR"*

bi Zg:o Zbl
E[X] = szl = Z DR — DT
=0
_ Zi:o | A Zq 0 SDR  ¢sDR  q¢"™™ ! ,

qn-',-mDR n+mDR n+mDR qn+m

To determine the variance of X, our proof assumes a set ordering of the elements of IF,. For this purpose
let us fix a generator o of IF} and use the ordering 0 < 1 < v < 0 < --- < 472

For (v,0) € F2 withy < 0, let us define A, ¢ as the set of bivariate polynomial pairs (f, g) with f, g are
monic in = with total degrees, deg(f) = n > 0 and deg(g) = m > 0 such that ged(f(z, ), g(z,7)) # 1
and ged(f(z, ), g(x,0)) # 1. Our first aim is to compute |Ag 1.

Let f,g € Ap1. Since f and g are monic in z, f(z,0), f(x,1) are monic polynomials of degree
n and g(z,0), g(z, 1) are monic polynomials of degree m in Fy[z]. We have finitely many choices for
non-relatively prime monic polynomial pairs (h;(x),{;(z)) with deg(h;) = n and deg(l;) = m with
i=1,...,sinF,[z]*

Let (f(z,0),g(z,0)) = (hi(z),l;(x)) and (f(x,1), g(x,1)) = (hj(z),1;(x)) for some fixed pair (3, j)
where 1 <1i,7 <.

Let f(x,y) = 2" + cp1(y)z™ L + -+ + cl( ):17 + co(y) where cq(y) € Fyly] of total degree
deg(cn—a(y)) < dandletc,_4(y) = a&n d) yd + - ("7‘1) where a(nfd) eF,.

Lethi(x):m"—i—asf)_lac"_l—i—---—ka((f) and h;(x )—x —i—ﬁn VT B ) with o ,Bw
for 0 < v,w < n — 1. Then for 1 < d < n, we have

(n—d) (@ (n—d)

cn—da(0) = ag =a,’ , and c,—q(1) =a, 4+ a(n d)

+ag " =57,

It follows that there are ¢?~' choices for such ¢, _4(y) and hence there are ¢°¢' ---¢"~* = ¢g™(»=1)/2
choices for such f(z,). Similarly there are ¢™("™~1)/2 choices for g(z,). Let us call these numbers
as Dy = ¢"(""1/2 and R; = ¢~ /2, Since we have s? choices for (7, ) (i and j are need not be
different, |A0)1| = 82D1R1.

Ontheotherhandif(f( y),g(z,y)) € Ap,1 thenfor~, 6 € F, withy < 0, (f(x ,%) gz, 5=2)) €

A, g, since f(z, j{) is again a monic polynomial in z of total degree n and g(z, 7) is again a monic
polynomial in z of total degree m. This correspondence (coordinate transformatlon) is bijective and
preserves relative primeness. Hence for a given v, 6 € F, with v < 6, one has | A, 4| = s?D1 R;.

For a general bivariate polynomial f(z,y) € F,[z,y] which is monic in z and of total degree n, one has
?¢* - ¢"! = ¢> Dy choices. Similarly for a general bivariate polynomial g(z,y) € F,[x, y] which is
monic in z and of total degree m, one has ¢%¢> - - - ¢™*! = ¢*™R; choices and therefore the number of
bivariate polynomial pairs in (f, g) which are monic in = with total degrees, deg(f) = n and deg(g) = m
is ¢>*2m Dy R;. Then with this notation we have z; = MiDll%l

Since we have ({) choices for (v,6) with v < 6, |A, 9| = s*DyR; for all (v,6) with v < 6 and

E[X] = 1, by Proposition 1 we have
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Var[X] = E[X?]-E[X]* = E[X?] -1 = —1+zq:¢2mi

q ‘Qb,
K3

q
! i
§ : 2 Int2
= T DR, e DRy

71 _
1 i |Ai|+2Z¢<j |A; N Aj| _ 14 Z?:é | A 22i<j s2D1R;
q2n+2mD1R1 q2n+2mD1R1 q2n+2mD1R1
> i b 23 e s?D1 Ry b; 2> i s2D1 Ry

q
= —1+ q2n+2mD1R1 q2n+2mD1R1 = -1+ ;Zq2n+2mD1Rl q2n+2mD1Rl

d 22 VS2D1R1

_ . 1<jJ _

- —szﬁ—qznmelRl = —1+E[X]+
=0

2 Zi<j S2D1R1
q2n+2mD1R1

= 141+ 2> i< 5°D1 Ry _ 2(2)s*D1 Ry _ qlg — 1)g2n+2m=2
2 DIR, . 2P DRy e
_ e _ 1 .
q? q

Theorem 3 Let f,g € Fy[x1,72,...,2,] be of the form f = cat + Zi;(l) c—i(wa, ..., zy)2t and
g= dmm’l’T+ZZBI dm—i(T, ..., 2p)x where c; # 0, dp, # 0,degc_; < 1—i, and deg d,,—; < m—i,
thus f and g have total degree | and m respectively. Let X be a random variable which counts the number
of v = (2, -, vn) € F~ 1V such that ged(f (z1,%2, -, Vn), 9(21,%25 -+ - Yn)) # 1.
Ifn>1,1>0and m > 0 then

(a) E[X] = ¢" 2 and

(b) Var[X] = ¢"2(1 — 1/q).

It follows from (a) that if ~y is chosen at random from Fg’l then

q
PI‘Ob[ng(f(fL'l,’)/g, s 77%)79('%2772) s a’Yﬂ) 7& 1] = =

Proof: A version of the paper with the proof which runs about 3 pages may be found at
http://www.cecm.sfu.ca/~mmonagan/papers/FPSAC16.pdf

2.1 A comparison with the binomial distribution.

Let Y be a random variable from a binomial distribution B(n,p) with n trials and probability p. So
0<Y <n,ProblY =k] = (})p*(1—p)" ", E[Y] = np and Var[Y] = np(1 — p). We noticed that the
mean and variance of X in Theorem 2 is the same as the mean and variance of the binomial distribution
B(n,p) with n = ¢ trials and probability p = 1/q. In Table 1 below we compare the two distributions for

f=a%+ (a1y + az)z + (asy® + asy + as) and
g =%+ (bry + ba)x + (bsy® + bay + bs)
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in F,[z,y] with ¢ = 7. Note that there are 7'° pairs for f,g. In Table 1 F} is the number of pairs
for which ged(f(x, ), g(x, ) # 1 for exactly k values for o € F;. We computed F}, by computing
this ged for all distinct pairs using Maple. The values for By, come from B(7,1/7). They are given by
By, = T'%Prob[Y = k.

k 0 1 2 3 4 5 6 7
Fi. 96606636 110666892 56053746 17287200 1728720 0 0 132055
By, 96018048 112021056 56010528 15558480 2593080 259308 14406 343

Table 1: Data for quadratic (f, g) in Fr[x, y]

The two zeros F5 and F can be explained as follows. Let R(y) be the Sylvester resultant of f and g.
Then applying Lemma 1 we have R(o) = 0 <= ged(f(z,a),g(z,a)) # 1 for a € F,. For our
quadratic polynomials f and g, Lemma 1(ii) implies deg R < deg f deg g = 4. Hence R(y) can have at
most 4 distinct roots unless f and g are not coprime in F7[x, y] in which case R(y) = 0 and it has 7 roots.
Therefore F5 = 0, Fs = 0 and F; = 132055 is the number pairs f, g which are not coprime in Fr[z, y].
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Appendix A

Below is Magma code for quadratic polynomials over F4. For each pair of quadratic polynomials F, G €

Fy[z,y] we compute X = |[{a € Fy : ged(F(z, @), G(z, ) # 1}|. The code counts Ay, the number of
pairs (F, G) with k = X and computes E[X] and Var[X].

q = 4;

Fg<z> := FiniteField(q);

P<x,y> := PolynomialRing(Fqg, 2);

N := 0; // counter

M := 0; // mean

V := 0; // variance

A := AssocilativeArray(); // frequencies

for X in [0..g] do A[X] := 0; end for;

for a in Fg do for b in Fqg do

for ¢ in Fg do for d in Fgq do for e in Fqg do
for r in Fg do for s in Fqg do

for t in Fg do for u in Fqg do for v in Fg do

if not ( [a,b,c,d,e] gt [r,s,t,u,v] ) then
X := 0;
for y in Fg do

F 1= x"2+ (a*xy+tb) »x+ (cxy"2+d*y+e) ;

G = X"2+ (rxy+s) *x+ (Ltxy 2+uxy+v) ;

if Gcd(F,G) ne 1 then X := X+1; end if;
end for;
if [a,b,c,d,e] eq [r,s,t,u,Vv] then

N := N+1; A[X] := A[X]+1;

M := M+X; V := V+(X-1)*(X-1);
else

N := N+2; A[X] := A[X]+2;

M := M+2xX; V := V42 (X-1) % (X-1);
end if;

end if;

end for; end for; end for; end for; end for;
end for; end for; end for; end for; end for;

"field size", qg;

"N", N, g~10;

"frequencies", A[O0],A[1],A[2],A[3],A[4];
"mean", 1.0xM/g"10;

"variance", 1.0+xV/g"10;
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