
FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 83–94

Non-ambiguous trees: new results and
generalization

Jean-Christophe Aval1, Adrien Boussicault1, Bérénice Delcroix-Oger2,
Florent Hivert3, and Patxi Laborde-Zubieta1

1 Laboratoire Bordelais de Recherche en Informatique (UMR CNRS 5800), Université de Bordeaux, 33405 TALENCE
2 Institut de Mathématiques de Toulouse (UMR CNRS 5219), Université Paul Sabatier, 31062 TOULOUSE
3 Laboratoire de Recherche en Informatique (UMR CNRS 8623) Bâtiment 650, Université Paris Sud 11, 91405 OR-
SAY CEDEX

Abstract. We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differ-
ential equation whose solution can be described combinatorially. This yield a new formula for the number of NATs.
We also obtain q-versions of our formula. And we generalize NATs to higher dimension.

Résumé. Nous introduisons une nouvelle définition des arbres non ambigus (NATs) en terme d’arbres binaires
étiquetés. Nous en déduisons une équation différentielle, dont les solutions peuvent être décrites de manière combi-
natoire. Ceci conduit à une nouvelle formule pour le nombre de NATs. Nous démontrons aussi des q-versions des
formules obtenues. Enfin, nous généralisons la notion de NAT en dimension supérieure.

Keywords. Non-ambiguous trees, binary trees, ordered trees, q-analogues, permutations, hook-length formulas

Introduction
Non-ambiguous trees (NATs for short) were introduced in a previous paper [ABBS14]. We propose in the
present article a sequel to this work.

Tree-like tableaux [ABN13] are certain fillings of Ferrers diagram, in simple bijection with permu-
tations or alternative tableaux [Pos07, Vie08]. They are the subject of an intense research activity in
combinatorics, mainly because they appear as the key tools in the combinatorial interpretation of the
well-studied model of statistical mechanics called PASEP: they naturally encode the states of the PASEP,
together with the transition probabilities through simple statistics [CW07].

Among tree-like tableaux, NATs were defined as rectangular-shaped objects in [ABBS14]. In this way,
they are in bijection with permutation σ = σ1 σ2 . . . σn such that the excedences (σi > i) are placed at
the beginning of the word σ. Such permutations were studied by Ehrenborg and Steingrimsson [ES00],
who obtained an explicit enumeration formula. Thanks to NATs, a bijective proof of this formula was
described in [ABBS14].

In the present work, we define NATs as labelled binary trees (see Definition 1.1, which is equivalent to
the original definition). This new presentation allows us to obtain many new results about these objects.

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html

84 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

The plan of the article is the following.
In Section 1, we (re-)define NATs as binary trees whose right and left children are respectively labelled
with two sets of labels. We show how the generating series for these objects satisfies differential equations
(Prop. 1.8), whose solution is quite simple and explicit (Prop. 1.9). A combinatorial interpretation of this
expression involves the (new) notion of hooks in binary trees, linked to the notion of leaves in ordered
trees. Moreover this expression yields a new formula for the number of NATs as a positive sum (see
Theorem 1.19), where Ehrenborg-Steingrimsson’s formula is alternating. It should be noted that Prop. 1.9
and Theorem 1.19 (in the case α = β = 1) were already proven by Clark and Ehrenborg [CE10]. To
conclude with Section 1, we obtain q-analogues of our formula, which are similar to those obtained for
binary trees in [HNT08] (see Theorem 1.22, the relevant statistics are either the number of inversions or
the inverse major index).
Section 2 presents a generalization of NATs in higher dimension. For any k ≤ d, we consider NATs of
dimension (d, k), embedded in Zd, and with edges of dimension k (i). The original case corresponds to
dimension (2, 1). Our main result on this question is a differential equation satisfied by the generating
series of these new objects.

This version of our work is an extended abstract; most proofs are only sketched or purely omitted.

1 Non-ambiguous trees

1.1 Definitions

We recall that a binary tree is a rooted tree whose vertices may have no child, or one left child, or one right
child or both of them. The size of a binary tree is its number of vertices. The empty binary tree, denoted
by ∅, is the unique binary tree with no vertices. Having no child in one direction (left or right) is the same
as having an empty subtree in this direction. We denote by BT the set of binary trees and by BT ∗ the set
BT \ {∅}. Given a binary tree B, we denote by VL(B) and VR(B) the set of left children (also called left
vertices) and the set of right children (also called right vertices). We shall extend this notation to NATs.

Definition 1.1 A non-ambiguous tree (NAT) T is a labelling of a binary tree B such that :
• the left (resp. right) children are labelled from 1 to |VL(B)| (resp. |VR(B)|), such that different left

(resp. right) vertices have different labels. In other words, each left (right) label appears only once.
• if U and V are two left (resp. right) children in the tree, such that U is an ancestor of V , then the

label of U in T is strictly greater than the label of V .

The underlying tree of a non-ambiguous tree is called its shape. The size n(T) of a NAT T is its
number of vertices. Clearly n(T) = 1 + |VL(T)| + |VR(T)|. It is sometimes useful to label the root as
well. In this case, it is considered as both a left and right child so that it carries a pair of labels, namely
(|VL(T)|+ 1, |VR(T)|+ 1). On pictures, to ease the reading, we color the labels of left and right vertices
in red and blue respectively. Figure 1 shows an example of a NAT, and illustrates the correspondence
between the geometrical presentation of [ABBS14] and Definition 1.1. The rectangle which contains the
non-ambiguous tree T is of dimension (wL(T), wR(T)) = (|VL(T)|+ 1, |VR(T)|+ 1).

(i) A definition in terms of labelled trees is given in Subsection 2.1.

Non-ambiguous trees: new results and generalization 85

T =

(11,12)
11

10
9

8

7

6
5

4
3

2

1

10

9

8 7

6

5
4

3

2

1

121110 9 8 7 6 5 4 3 2 1
11
10
9
8
7
6
5
4
3
2
1

• •
• •

•

•

•

•

• •

•

•
•

•
•

•
•

•
•

•
•

•

TL =
4

3
2

1

(6,5)

5

4
3

2

1
TR =

(6,7)
6

5
4

3

2

1

4

3 2
1

Fig. 1: A non-ambiguous tree and its left and right subtrees

1.2 Differential equations on non-ambiguous trees
The goal of this section is to get (new) formulas for the number of NATs with prescribed shape. The
crucial argument is the following remark: Let T be a NAT of shape a non empty binary tree B =

L R
.

Restricting the labellings of the left and right children of T to L and R gives non-decreasing labelling of
their respective left and right children. Note that the root of L (resp. R) is a left (resp. right) child in T . By
renumbering the labels so that they are consecutive numbers starting from 1, we get two non-ambiguous
labellings for L and R, that is two non-ambiguous trees TL and TR. See Figure 1 for an example.

Conversely, knowing the labelling of L and R, to recover the labelling of T , one has to choose which
labels among 1 . . .VL(T) will be used for L (including its root) and the same for right labels. As a
consequence: ∣∣∣NAT (

L R

)∣∣∣ =

(
|VL(T)|
|VL(R)|

)(
|VR(T)|
|VR(L)|

)
|NAT (L) | |NAT (R) |. (1)

Our first step is to recover hook-length formula for the number of NATs of fixed shape ([ABBS14]). We
use the method from [HNT08], namely, applying recursively a bilinear integro-differential operator called
here a pumping function along a binary tree.

First of all, we consider the space QNAT of formal sums of non-ambiguous trees and identifies
NAT (B) with the formal sum of its elements. We consider the map M : NAT × NAT 7→ QNAT
sending (T1, T2) to the formal sum of NATs T such that TL = T1 and TR = T2. By linearity, we extend
M to a bilinear map QNAT ×QNAT 7→ QNAT . The main remark is thatNAT (B) can be computed
by a simple recursion using M:

Lemma 1.2 The set NAT (B) of non-ambiguous tree of shape B satisfies the following recursion:

NAT (∅) = ∅ and NAT
(
L R

)
= M (NAT (L) ,NAT (R)) . (2)

To count non-ambiguous trees, and as suggested by the binomial coefficients in (1), we shall use doubly
exponential generating functions in two variables x and y where x and y count the size of the rectangle
in which the NAT is embedded: the weight of the NAT T is Φ(T) := xwL(T)

wL(T)!
ywR(T)

wR(T)! . We extend Φ(T)

by linearity to a map QNAT 7→ Q[[x, y]]. Consequently, Φ(NAT (B)) is the generating series of the
non-ambiguous trees of shape B. Thanks to (1) the image in Q[[x, y]] of the bilinear map M under the
map Φ is a simple differential operator:

86 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

Definition 1.3 The pumping function B is the bilinear map Q[[x, y]]×Q[[x, y]] 7→ Q[[x, y]] defined by

B(u, v) =

∫
x

∫
y

∂x(u) · ∂y(v). (3)

We further define recursively, for any binary tree B an element B(B) ∈ Q[[x, y]] by

B(∅) = x+ y and B
(
L R

)
= B (B(L),B(R)) . (4)

Hence (1) rewrites as

Proposition 1.4 For T1, T2 ∈ QNAT , one as Φ(M(T1, T2)) = B(Φ(T1),Φ(T2)). As a consequence,
for any non empty binary tree B, Φ(NAT (B)) = B(B).

Since B(B) = (VL(R)+1)(VR(L)+1)
(VL(T)+1)(VR(T)+1) B(L)B(R) we recover the hook-length formula of [ABBS14] for

non-ambiguous trees of a given shape:

Proposition 1.5 Let B be a binary tree, then

|NAT (B)| = |VL(B)|! · |VR(B)|!∏
U :left child

VL(U) + 1 ·
∏

U :right child

VR(U) + 1
. (5)

Let us consider the exponential generating function of non-ambiguous trees with weight Φ:

H :=
∑

T∈NAT
Φ(T) =

∑
T∈NAT

xwL(T)

wL(T)!

xwR(T)

wR(T)!
. (6)

It turns out that we need to consider the two following slight modifications to get nice algebraic properties
(because of the empty NAT).

G =
∑
B∈BT

B(B) and N =
∑

T∈NAT ∗

x|VL(T)| · y|VR(T)|

|VL(T)|! · |VR(T)|!
. (7)

The function H, N, G are closely related. Each function is used in different situation. The first one is the
natural definition we want to give. The second one is convenient from a bijective point of view. The last
one is convenient from the algebraic and analytic point of view. They differ by their constant term and
shift in the degree. Precisely, N = ∂x∂yH so that

H = 1 +

∫
x

∫
y

N and G = x+ y +

∫
x

∫
y

N and G = H + x+ y − 1 (8)

The two last relations are consequences of Proposition 1.4.

Proposition 1.6 The generating function N and G can be computed by the following fixed point differen-
tial equations:

G = x+ y +

∫
x

∫
y

∂xG · ∂yG and N =

(
1 +

∫
x

N

)
·
(

1 +

∫
y

N

)
(9)

Non-ambiguous trees: new results and generalization 87

Proof: The first equation is a just a consequence of the definition of the bilinear map B:

G = x+ y +
∑

L,R∈BT
B
(
L R

)
= x+ y +

∑
L,R∈BT

B(B(L),B(R)) = x+ y + B(G,G).

To prove the second equation, remark that the first can be rewritten as ∂x∂yG = ∂xG.∂yG. So that,
N = ∂x∂yH = ∂x∂yG. To conclude, it suffices to remark that ∂xG = 1 +

∫
y
N 2

A closed formula can be computed for N and H using Proposition 2.8 and Proposition 2.9.

Proposition 1.7 The exponential generating function for non-ambiguous trees are given by

N =
ex+y

(1− (ex − 1)(ey − 1))
2 , and H = − log(1− (ex − 1)(ey − 1)).

We introduce two statistics : the number of right (resp. left) vertices in the rightmost (resp. leftmost)
branch of the root of a tree. For a binary tree B, we will denote byR0(B) (resp. L0(B)) the two previous
statistics. Using these statistics, we define an (α, β)-generating function for non-ambiguous trees:

N(α,β) =
∑

T∈NAT

x|VL(T)| · y|VR(T)| · αR0(T) · βL0(T)

|VL(T)|! · |VR(T)|!
.

Proposition 1.8 A differential equation for N(α,β) is

N(α,β) =

(
1 + α

∫
x

N(α,1)

)
·
(

1 + β

∫
y

N(1,β)

)
,

Proof: We just have to define a new pumping function by setting B(α,β)(B) = αR0(B)βL0(B) B(B) and
deduce the expected differential equation. 2

The solution of the new differential equation is given by Proposition 1.9.

Proposition 1.9 The (α, β)-exponential generating function for non-ambiguous trees is equal to

N(α,β) =
eαx+βy

(1− (ex − 1)(ey − 1))
α+β

.

1.3 Bijection with some labelled ordered trees
In what follows, we will use rooted ordered trees. These are trees such that each node has an ordered
(possibly empty) list of children. We draw the children from left to right on the pictures.

Note that the solution of Proposition 1.9 can be rewritten as :

N(α,β) = eαxeβye−α ln(1−(ex−1)(ey−1))e−β ln(1−(ex−1)(ey−1)). (10)

The purpose of this subsection is to explain this expression combinatorially. Let us first describe objects
“naturally” enumerated by the RHS of (10). We recall that ex is the exponential generating series of sets
and − ln(1 − x) is the exponential generating series of cycles. The objects can be described as 4-tuples
consisting of two sets of elements and two sets of cycles whose elements are pairs of non empty sets. Let
us denote by T4 the set of such 4-tuples.

We first link non-ambiguous trees with ordered trees. We need the following definition:

88 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

(11,12)
11

10
9

8

7

6
5

4
3

2

1

10

9

8 7

6

5
4

3

2

1

(11,12)

10

10

6

8

4

6

3

1

9

2 11 7

9

5

8

4 3

7 5
2

1

Fig. 2: Hooks on a non-ambiguous tree and associated ordered tree

Definition 1.10 Let B be a binary tree and v one of his nodes. The hook of a vertex v is the union of {v},
its leftmost branch and its rightmost branch. There is a unique way to partition the vertices in hooks. The
number of hooks in such a partition is the hook number of the tree.

Remark 1.11 We can obtain recursively the unique partition of the preceding definition by extracting the
root’s hook and iterating the process on each tree of the remaining forest.

Example 1.12 On the left part of Figure 2, we represented in red the hook of 10. The partition of vertices
in hooks is obtained by removing the dotted edges. The hook number of the tree is 8.

We denote by NOT the set of ordered trees O such that:
• Each vertex, except the root, is labelled and coloured (in red or blue). The root is labelled by a red

label and a blue label, both maximal.
• The root has red and blue children, the red children being on the left side of blue children. Blue

(resp. red) vertices have only red (resp. blue) children.
• The labels of red (resp. blue) descendants or right siblings of a red (resp. blue) vertex v are smaller

than the label of v.

Proposition 1.13 The set of non-ambiguous trees NAT on n nodes is in bijection with the set of trees of
NOT on n nodes. This bijection is denoted by ξ.

Proof: Let us consider a non-ambiguous tree T and construct an ordered tree ξ(T) = O. The root of
T will be associated to the root of O. Starting from the root r of the ordered tree, the red (resp. blue)
children of r are the set of left (resp. right) descendants of the root of T . The expected ordered tree is then
obtained recursively by the following rule : if a node v in the ordered tree is a left (resp. right) child in T ,
then its children in the ordered tree is the set of right (resp. left) descendants of v in T , with every right
(resp. left) child on the right side of its parent.

We can reconstruct recursively the non-ambiguous tree associated to such an ordered tree, by reversing
the process from the children of the root to the leaves in the ordered tree. 2

Remark 1.14 Let us remark that the hook of a vertex v, different from the root in the non-ambiguous tree,
can be read off from the ordered trees : it consists in the children of v in the ordered tree and the siblings
of v on the right side of v in the ordered tree.

Example 1.15 The ordered tree associated to the non-ambiguous tree on the left part of Figure 2 is
represented on the right part of the same figure.

Non-ambiguous trees: new results and generalization 89

Proposition 1.16 The set of non-ambiguous trees NAT is in bijection with pairs of 2-coloured words,
with blue letters on {1, . . . |VR| − 1} and red letters on {1, . . . , |VL| − 1}, where letters in blocks of the
same colors are decreasing, the first (resp. second) word ends by a red (resp. blue) letter and VR (resp.
VL) is the set of right (resp. left) children in the non-ambiguous tree. This bijection is denoted by ξ ◦ Ω.
Moreover, the pairs of 2-coloured words are exactly described by the previous 4-tuples.

Proof (sketch): From T ∈ NOT , we obtain the two words Ω(T) = (w1, w2) by a post-order traversal
visit of the descendant of the red (resp. blue) children of the root for w1 (resp. w2). The injectivity of Ω
can be shown ad absurdum.

From such a word, we can build back recursively the associated ordered trees by reading each word
from right to left and adding, for each new letter l, a node labelled by l to the left of the closest ancestor
of the current position whose label is of the same colour as l and smaller than l.

The consecutive maximal red (rep. blue) elements from right to left in the first (resp. second) word
correspond to the children of the root in the ordered tree. The first (resp. second) set of the 4-tuple can
be defined as the set of blue (resp. red) children of the root in the ordered tree. Then, each remaining
subword, corresponding to one child of the root and its descendants in the ordered tree, contains both
blue and red elements, the rightmost letter corresponding to the child of the root. Each of these subwords
can be viewed as a blue (resp. red) cycle, as the child of the root is the biggest blue (resp. red) element
in the subword and can be found again. This cycle is made of alternating sets of blue and red elements,
corresponding to right and left vertices in the non-ambiguous tree, which can be joined in pairs of non
empty sets, giving the two set of cycles of the 4-tuple. 2

Example 1.17 The pair of words associated with trees of Figure 2 is (4 8 3 6 6 1 10 9 10 2, 11 8 5 9 7 4 7
2 5 3 1). The associated 4-tuple is: ({2}, {1,4,11}, {({10 4 8}{36}{6110 9})}, {({85}{97}),({72}{53})).

Remark 1.18 The bijection Ω is similar to the “zigzag” bijection of [SW07].

We may derive from our construction a bijective proof of the following enumeration formula.

Theorem 1.19 The (α, β)-analogue of the number of non empty non-ambiguous trees with w left vertices
and h right vertices is given by:

NAT w,h =
∑
p≥1

(p− 1)! · (p− 1)(α+β) · S2,α(w + 1, p)S2,β(h+ 1, p) (11)

where p(q) is the rising factorial, and S2,q denotes the q-analogue of the Stirling numbers of the second
kind such that, if we consider a set partition, q counts the number of elements different from 1 in the subset
containing 1. In this positive summation expression, each summand corresponds to the number of NATs
with prescribed size, and whose number of hooks equals p.

We conclude this subsection with following result on binary trees. The corresponding integer series
appears as [Slo, A127157] in OEIS.

Proposition 1.20 The set of binary trees on n vertices with hook number p is in bijection with the number
of ordered trees on n+ 1 vertices having p vertices being the parent of at least a leaf.

90 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

1.4 q-analogs of the hook formula
As for binary trees, there exists q-analogues of the hook formula for NATs of a given shape associated to
either the number of inversions or the major index. There are two ingredients: first we need to associate
two permutations to a non-ambiguous tree, and second we need to give a q-analogue of the bilinear map
B. It turns out that it is possible to use two different q namely qR and qL for the derivative and integral in
x and y.

The first step to formulate a q-hook formula is to associate to any non empty non-ambiguous tree T a
pair of permutations σ(T) = (σL(T), σR(T)) ∈ SVL(T) ×SVR(T).

Definition 1.21 Let T be a non-ambiguous tree. Then σL(T) is obtained by performing a left postfix
reading of the left labels: precisely we recursively read trees

L R
by reading the left labels of L, then

the left labels of R and finally the label of the root if it is a left child. The permutation σR(T) is defined
similarly reading right labels, starting from the right subtree, then the left subtree and finally the root.

If we take back the example of Figure 1 we get the two permutations σL(T) = (2, 1, 4, 3, 6, 10, 8, 9, 5, 7)
and σR(T) = (1, 2, 3, 4, 5, 7, 11, 9, 6, 8, 10).

Recall that the number of inversions of a permutation σ ∈ Sn is the number of i < j <= n such that
σ(i) > σ(j). A descent of σ is a i < n such that σ(i) > σ(i+ 1) and the inverse major index of σ is the
sum of the descents of σ−1. Finally for a repetition free word w of length l we write Std(w) the permuta-
tions in Sl obtained by renumberingw keeping the order of the letters. For example Std(36482) = 24351.
We define as usual the q-integer [n]q := 1−qn

1−q , and the q-factorial [n]q! :=
∏n
i=1[i]q .

Theorem 1.22 For a non-ambiguous tree T and a statistic S ∈ {Inv, iMaj}, define

wS(T) := q
S(σL(T))
L q

S(σR(T))
R . (12)

Then, for any non empty binary tree B∑
T∈NAT (B)

wS(T) =
|VL(B)|qL ! · |VR(B)|qR !∏

U :left child

[VL(U) + 1]qL ·
∏

U :right child

[VR(U) + 1]qR
. (13)

Going back to the non-ambiguous tree of Figure 1, the inversions numbers are Inv(σL(T)) = 11 and,
Inv(σR(T)) = 7 so that wInv(T) = q11

L q
7
R. For the inverse major index, we get the permutations

σL(T)−1 = (2, 1, 4, 3, 9, 5, 10, 7, 8, 6) and σR(T)−1 = (1, 2, 3, 4, 5, 9, 6, 10, 8, 11, 7). Consequently,
iMaj(σL(T)) = 1+3+5+7+9 = 25 and iMaj(σR(T)) = 6+8+10 = 24 so that wiMaj(T) = q25

L q
24
R .

Note that it is possible to read directly wS(T) on T . We do not give the precise statement here to keep
the presentation short.

The argument of the proof follows the same path as for the hook formula, using pumping functions:
recall that the q-derivative and q-integral are defined as ∂x,qxn := [n]qx

n−1 and
∫
x,q
xn := xn+1

[n+1]q
. Then

the (qL, qR)-analogue of the pumping function is given by

Bq(u, v) =

∫
x,qL

∫
y,qR

∂x,qL(u) · ∂y,qR(v). (14)

We also define recursively Bq(B) by Bq(∅) := x+ y and Bq
(
L R

)
= Bq (Bq(L),Bq(R)) . Then the

main idea is to go through a pumping function on pairs of permutations. We write QS the vector space

Non-ambiguous trees: new results and generalization 91

of formal sums of permutations. For any permutation σ ∈ Sn we write
∫
σ = σ[n + 1] the permutation

in Sn+1 obtained by adding n+ 1 at the end. Again we extend
∫

by linearity.

Definition 1.23 The pumping function on permutation is the bilinear map BS : QS × QS 7→ QS
defined for σ ∈ Sm and µ ∈ Sn by BS(σ, µ) =

∑
uv∈Sm+n+1

Std(u)=
∫
σ

Std(v)=µ

uv .

We define also a pumping function on pairs of permutations

BS2 ((σL, σR), (µL, µR)) := (BS(σL, µL),BS(µR, σR))

For example BS(21, 12) = 21345 + 21435 + 21534 + 31425 + 31524 + 41523 + 32415 + 32514 +
42513 + 43512. Note that for two non empty non-ambiguous tree C,D.∑

T∈M(C,D)

σL(T) = BS(σL(C), σL(D)) and
∑

T∈M(C,D)

σR(T) = BS(σR(D), σR(C))

The central argument is the following commutation property:

Proposition 1.24 For a statistic S ∈ {Inv, iMaj}, and (σL, σR) ∈ Sm ×Sn, define

ΨS((σL, σR)) := q
S(σL)
L

xm+1

[m+ 1]qL !
q
S(σR)
R

yn+1

[n+ 1]qL !
. (15)

Then for any pairs σ = (σL, σR) and µ = (µL, µR), one has ΨS(BS2(σ, µ)) = Bq(ΨS(σ),ΨS(µ))

As a consequence, noting that wS(T) = ΦS(σ(T)), one finds that for any non empty non-ambiguous
trees C and D, ∑

T∈M(C,D)

wS(T) = ΦS
(
BS2(σ(C), σ(D)

)
= Bq(wS(C), wS(D)) .

Applying this recursively on the structure of a binary treeB, we have that
∑
T∈NAT (B) wS(T) = Bq(B) .

Unfolding the recursion for Bq(B), gives finally Theorem 1.22.
We conclude this section by an example. Let B = . Then one finds that the q- hook

formula gives (qx3 + qx2 + qx+ 1)(qy2 + qy+ 1)(qx+ 1). Expanding this expression, one finds that the
coefficient of qx2qy is 2. For the iMaj statistic it corresponds to the two following non-ambiguous trees
which are shown with their associated left and right permutations:

(4,5)

3 4

2 2 1 1

3

((2, 3, 1), (1, 3, 4, 2)) ,

(4,5)

3 4

2 2 1 3

1

((2, 3, 1), (3, 1, 4, 2))

2 Non-ambiguous trees in higher dimension
In this section we give a generalization of NATs to higher dimensions. NATs are defined as binary trees
whose vertices are embedded in Z2, and edges are objects of dimension 1 (segments). Let d ≥ k ≥ 1 be
two integers. In higher dimension, binary trees are replaced by

(
d
k

)
-ary trees embedded in Zd and edges

are objects of dimension k. As in Section 1.2 we obtain differential equations for these objects.

92 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

2.1 Definitions
We call (d, k)-direction a subset of cardinality k of {1, . . . , d}. The set of (d, k)-directions is denoted
by Πd,k. A (d, k)-tuple is a d-tuple of (N ∪ {•})d, in which k entries are integers and d − k are •. For
instance, (•, 1, •, 5, 2, •, •, 3, •) is a (9, 4)-tuple. The direction of a (d, k)-tuple U is the set indices
of U corresponding to entries different from •. For instance, the direction of our preceding example is
{2, 4, 5, 8}.

Definition 2.1 A
(
d
k

)
-ary treeM is a tree whose children of given vertex are indexed by a (d, k)-direction.

A (d, k)-ary tree has at most
(
d
k

)
children. A

(
d
k

)
-ary tree will be represented as an ordered tree where

the children of a vertex S are drawn from left to right with respect to the lexicographic order of their
indices. If a vertex S has no child associated to an index π, we draw an half edge in this direction. An
example is drawn on Figure 3.

Definition 2.2 A non-ambiguous tree of dimension (d, k) is a labelled
(
d
k

)
-ary tree such that:

1. a child of index π is labelled with a (d, k)-tuple of direction π and the root is labelled with a
(d, d)-tuple;

2. for any descendant U of V , if the i-th component of U and V are different from •, then the i-th
component of V is strictly greater than the i-th component of U ;

3. for each i ∈ J1, dK, all the ith components, different from •, are pairwise distinct and the set of ith
components, different from •, of every vertices in the tree, is an interval, whose minimum is 1.

The set of non-ambiguous trees of dimensions (d, k) is denoted by NAT d,k.

We write NATd,k for a non-ambiguous tree (of dimensions (d, k)). Figure 3 gives an example of a
NAT3,1 and a NAT3,2.

(5,7,6)

(4,•,•)

(1,•,•) (•,•,5)

(•,5,•)

(•,3,•) (•,•,4)

(•,•,2)

(•,4,•)

(•,•,1)

(•,•,4)

(2,•,•) (•,6,•)

(3,•,•)

(•,2,•)

(•,1,•)

(6,5,4)

(5,3,•)

(3,1,•) (2,•,2)

(1,•,1) (•,4,3)

(4,2,•)

Fig. 3: A NAT of dimension (3, 1) and a NAT of dimension (3, 2).

Definition 2.3 The geometric size of a NATd,k is the d-tuple of integers (w1, . . . , wd) which labels the
root of the NATd,k, it is denoted by w1× · · · ×wd. The π-size of a NATd,k is the number of vertices in the
tree of direction π, the set of such vertices is denoted by Vπ .

Proposition 2.4 gives the relation between the geometric size and the π-size of a non-ambiguous trees.

Proposition 2.4 LetM be a
(
d
k

)
-ary tree, the root label is constant onNAT d,ks of shapeM (NAT d,k(M)):

wi(M) := wi =
∑

π∈Πd,k | i∈π

|Vπ(M)|+ 1.

Non-ambiguous trees: new results and generalization 93

2.2 Associated differential equations
In this section, we denote by x{i1,...,ik} the product xi1×. . .×xik , by ∂{i1,...,ik} the operator ∂xi1

∂xi2
. . . ∂xik

and by
∫
{i1,...,ik} the operator

∫
xi1

∫
xi2

. . .
∫
xik

. As for non-ambiguous trees (Proposition 1.5), there is

a hook formula for the number of non-ambiguous trees with fixed underlying tree. Let M be a
(
d
k

)
-ary

tree, for each vertex U we denote by Ei(U) the number of vertices, of the subtree whose root is U (itself
included in the count), whose direction contains i.

|NAT d,k(M)| =
d∏
i=1

(wi(M)− 1)!

 ∏
U : child of direction containing i

Ei(U)

−1

. (16)

There is a (d, k)-dimensional analogue of the fixed point differential Equation 9:
Proposition 2.5 The exponential generating function Nd,k of generalized non-ambiguous trees satisfies
the following differential equation

Nd,k :=
∑

T∈NAT ∗
d,k

d∏
i=1

x
wi(T)−1
i

(wi(T)− 1)!
=

∏
π∈Πd,k

(
1 +

∫
π

Nd,k

)
(17)

Proof: The method is analogue to the method of Section 1.2, and goes through the use of a
(
d
k

)
-linear

map and a pumping function for
(
d
k

)
-ary trees. 2

The family of differential equations defined by Equation 17 can be rewritten using differential operators
instead of primitives. We need to introduce the function Gd,k =

∫
{1,...,d}Nd,k +

∑
π∈Πd,d−k

xπ . Then,
we show that Gd,k satisfies the following differential equations:
Proposition 2.6 The differential equation satisfied by Gd,k is ∂1 . . . ∂dGd,k =

∏
π∈Πd,d−k

∂πGd,k.

In the generic case, we are not able to solve those differential equations. We know that setting a variable
xd to 0 gives the generating function of NATs of lower dimension.
Proposition 2.7 Let d > k ≥ 1, then Nd,k|xd=0 = Nd−1,k.

For some specific values of d and k we have (at least partial) results.
Proposition 2.8 If we know a particular solution s for ∂1 . . . ∂dGd,d−1 = ∂1Gd,d−1 × . . . × ∂dGd,d−1

then, for any function s1(x1), . . . , sd(xd), the function s(s1(x1), . . . , sd(xd)) is also a solution.

Proposition 2.9 Some non trivial rational functions are solutions of ∂1 . . . ∂dGd,1 =
∏
π∈Πd,d−1

∂πGd,1.

Proof (sketch): We define G(i) = ∂πGd,1 where i ∈ J1, dK and π = J1, dK \ {i}. We get the relation
∂iG(i) =

∏d
j=1 G(j) and then

∏d
i=1 ∂iG(i) =

∏d
i=1 G

d
(i). To obtain a particular solution, we just need

to identify, in the previous equation, the term ∂iG(i) to the term Gd(i). We thus obtain some non trivial
solutions for our equation, which are rational functions. 2

Since dimension (2, 1) is the unique case where Proposition 2.8 and Proposition 2.9 can be applied at
the same time, and the computation of Nd,d is straightforward, we have the following proposition.

Proposition 2.10 We have the closed formulas: N2,1 = N and Nd,d =
∑
n≥0

(x1·...·xd)n

(n!)d
.

We see Nd,d as is a kind of generalized Bessel function because N2,2(x/2,−x/2) = J0(x) where Jα is
the classical Bessel function. This supports our feeling that the general case leads to serious difficulties.

94 J.-C. Aval, A. Boussicault, B. Delcroix-Oger, F. Hivert, and P. Laborde-Zubieta

2.3 Geometric interpretation
As for non-ambiguous trees, we can give a geometric definition of non-ambiguous trees of dimensions
(d, k) as follows. We denote by (e1, . . . , ed) the canonical basis of Rd and (X1, . . . , Xd) its dual basis,
i.e. Xi is R-linear Xi(ei) = δi,j . Let P ∈ Rd and π = {i1, . . . , ik} a (d, k)-direction, we call cone of
origin P and direction π the set of points C(P, π) := {P + a1ei1 + · · ·+ akeik | (a1, . . . , ak) ∈ Nk}.
Definition 2.11 A geometric non-ambiguous tree of dimension (d, k) and box w1 × · · · × wd is a non
empty set V of points of Nd such that:

1. V is contained in J1, w1K× · · · × J1, wdK and contains the point (w1, . . . , wd), called the root,
2. For P ∈ V different from the root, there exists a unique (d, k)-direction π = {i1, . . . , ik} such that

the cone c(P, π) contains at least one point different from P . We say that P is of type π.
3. For P and P ′ two points of V belonging to a same affine space of direction Vect(ei1 , . . . , eik), then,

either ∀j ∈ J1, kK, Xij (P) > Xij (P ′), or ∀j ∈ J1, kK, Xij (P ′) > Xij (P).
4. For each i ∈ J1, dK, for all l ∈ J1, wi − 1K, the affine hyperplane {xi = l} contains exactly one

point of type π such that i ∈ π.

Proposition 2.12 There is a simple bijection between the set of geometric non-ambiguous tree of box
w1 × · · · × wd and the set of non-ambiguous tree of geometric size w1 × · · · × wd.

References
[ABBS14] J.C. Aval, A. Boussicault, M. Bouvel, and M. Silimbani. Combinatorics of non-ambiguous

trees. Advances in Applied Mathematics, 56:78–108, May 2014.

[ABN13] J.-C. Aval, A. Boussicault, and P. Nadeau. Tree-like tableaux. Electron. J. Combin., 20(4):Pa-
per 34, 24, 2013.

[CE10] E. Clark and R. Ehrenborg. Explicit expressions for the extremal excedance set statistics.
European J. Combin., 31(1):270–279, 2010.

[CW07] S. Corteel and L. K. Williams. Tableaux combinatorics for the asymmetric exclusion process.
Adv. in Appl. Math., 39(3):293–310, 2007.

[ES00] R. Ehrenborg and E. Steingrimsson. The excedance set of a permutation. Advances in Applied
Mathematics, 24(3):284 – 299, 2000.

[HNT08] F. Hivert, J.C. Novelli, and J.Y. Thibon. Trees, functional equations, and combinatorial Hopf
algebras. European Journal of Combinatorics, 29(7):1682–1695, 2008.

[Pos07] A. Postnikov. Total positivity, grassmannians, and networks, 2007.

[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

[SW07] E. Steingrimsson and L. K. Williams. Permutation tableaux and permutation patterns. J.
Combin. Theory Ser. A, 114(2):211–234, 2007.

[Vie08] X. Viennot. Alternative tableaux, permutations and partially asymmetric exclusion process.
Slides of a talk at the Isaac Newton Institute in Cambridge, 2008.

	Non-ambiguous trees
	Definitions
	Differential equations on non-ambiguous trees
	Bijection with some labelled ordered trees
	q-analogs of the hook formula

	Non-ambiguous trees in higher dimension
	Definitions
	Associated differential equations
	Geometric interpretation

