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Asymptotics of polygons in restricted
geometries subject to a force

Nicholas R. Beaton, Jeremy Eng, and Christine E. Soteros

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada

Abstract. We consider self-avoiding polygons in a restricted geometry, namely an infinite L x M tube in Z>. These
polygons are subjected to a force f, parallel to the infinite axis of the tube. When f > 0 the force stretches the
polygons, while when f < 0 the force is compressive. In this extended abstract we obtain and prove the asymptotic
form of the free energy in the limit f — —oco. We conjecture that the f — —oo asymptote is the same as the free
energy of Hamiltonian polygons, which visit every vertex ina L x M X N box.

Résumé. Nous considérons des polygones auto-évitants dans une géométrie restreinte, en particulier un tube infini
dans Z3 avec les dimensions L x M. Ces polygones sont soumis 2 une force f, parallele a 1’axe infini du tube.
Quand f > 0 la force tend les polygones, alors que quand f < 0 la force est compressive. Dans ce résumé détaillé,
nous obtenons et prouvons la forme asymptotique de 1’énergie libre en la limite f — —oo. Nous conjecturons que
I’asymptote f — —oo est la méme que 1’énergie libre des polygones hamiltoniennes, qui visitent chaque sommet
dans un boite L x M x N.

Keywords. statistical mechanics, polygons, polymers

1 Introduction

Self-avoiding walks and polygons are the standard lattice models of, respectively, linear and ring polymers
in dilute solution (Vanderzande| (1998)). While there have been many important recent breakthroughs
in the study of these models for dimensions d > 4 and d = 2 (see e.g. |Bauerschmidt et al.| (2012))
many challenging questions remain open (especially for d = 3) with regard to phase transitions and
entanglement complexity (Orlandini and Whittington| (2007))).

Regarding entanglement complexity, using a self-avoiding polygon model, Sumners and Whittington
(1988) and independently |[Pippenger| (1989) proved the 1960’s Frisch-Wasserman-Delbruck (FWD) con-
jecture that sufficiently long ring polymers will be knotted (see e.g. Sumners and Whittington| (1988)).
Since then, motivated in part by experimental studies of DNA, there has been much interest in exploring
entanglement complexity in polymer models and the effect of factors such as solvent quality, external
forces and/or geometric confinement (Orlandini and Whittington| (2007))). In particular, motivated by
atomic force microscopy experiments, one such area of interest has been models of polymers subject to
a tensile force f (see e.g.|Farago et al.|(2002); Krawczyk et al.|(2005)); Janse van Rensburg et al.| (2008));
Atapour et al.| (2009); [loffe and Velenik| (2010); |Beaton| (2015)); [Beaton et al.| (2015)). For this case,
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Janse van Rensburg et al.|(2008)) found that for sufficiently large fixed forces and sufficiently large poly-
gons, all but exponentially few are knotted, i.e. the FWD-conjecture holds for sufficiently large forces. It
is believed that this should hold for any force, however this has yet to be proved. By restricting the poly-
gons to lie in a lattice tube, however, |Atapour et al.| (2009) proved that for any fixed force (either stretching
(f > 0) or compressing (f < 0)), all but exponentially few sufficiently large polygons are knotted (i.e. the
FWD-conjecture holds). The proof was based on transfer-matrix theory and pattern theorem arguments.

Atapour et al.| (2009)) considered self-avoiding polygons in a restricted geometry, namely an infinite
L x M tube in Z3, which were subjected to a force f parallel to the infinite axis of the tube. One question
left open in that study was the behaviour of the polygons as f — —oo. In this case, for the FWD-
conjecture, for example, there are two limits involved, the limit as the polygon length n — oo and the
limit as the force f — —oo. If one fixes a polygon’s length n, and lets the force go to —oo, then the result
is a polygon of length n which is maximally compressed and hence its extent in the infinite axis of the tube
is [n/(L+ 1)(M + 1)]. If n (even) is a multiple of (L + 1)(M + 1), the resulting polygon corresponds
to an undirected Hamiltonian circuit (which we call a Hamiltonian polygon) on a rectangular sub-lattice
of the tube. |[Eng|(2014) proved that the FWD-conjecture holds for Hamiltonian polygons. However, it is
unclear what happens if one instead first takes n — oo and then increases the compressive force. That is,
the behaviour of the limiting free energy in the f — —oo limit has been an open question, even for this
simpler, essentially one-dimensional, problem.

In this extended abstract, we explore the Atapour et al.| (2009) model further to address this question
by investigating the behaviour of the model’s free energy as f — —oo. In particular, we establish the
existence and form of the asymptote in this limit. In Section [2] we precisely define the model and state
some existing results regarding the thermodynamic limit. In Section[3|we state and prove the main theorem
(Theorem [I). Our proof depends heavily on some results by Janse van Rensburg (2000) regarding the
density functions of lattice models; for readability we quote them here.

This paper is part of a larger work|Beaton et al.|(2016), in which we also determine the asymptotic form
of the free energy as f — oo, as well as conduct a more detailed investigation of Hamiltonian polygons.
We conjecture that the asymptote found in this paper is in fact the free energy of these Hamiltonian
polygons and hence that the FWD conjecture will also hold in the f — —oo limit. A brief discussion of
this conjecture can be found in Sectiond] Note that although the presentation here is focused on polygons
in tubular sublattices of Z?3, the proofs presented include the case that one of L or M is zero so that the
tube is actually a slit in Z2. Similar arguments are expected to hold for polygons in tubular sublattices of
74, for any d > 4, however it is only for d = 3 that polygons can be knotted.

2 The model

LetTr =T C 7> be the semi-infinite L x M tube on the cubic lattice defined by
T={(z,y,2) €Z3:2>0,0<y<L,0<2z<M}.

We will assume without loss of generality that L > M. Define Pr to be the set of self-avoiding polygons
in T which occupy at least one vertex in the plane x = 0, and let P, be the subset of Pr comprising
polygons with n edges. Then let pr,, = |Pr | See Figurefor an example.

Remark. Throughout the rest of this paper, the symbol n will only be used to denote the number of
edges in polygons. We will thus always assume that n is even. This includes limits, where for example
lim,,_, o should be interpreted as a limit through even values of n only.
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Fig. 1: A self-avoiding polygon in the 2 x 1 tube. This polygon has length 36 and span 6.

It is known (e.g.|Atapour et al.| (2009)) that the connective constant of polygons in T,

1
kr = lim —logpr n, (1)
n—oo N

exists and is finite.

We define the span s(7) of a polygon m € Pr to be the maximal x-coordinate reached by any of its
vertices. To model a force acting parallel to the z-axis, we associate a Boltzmann weight e/*(™) with each
polygon 7. Let pr ,, (s) be the number of polygons in Pr ,, of span s. We define the partition function

ZT,n(f) = Z efs(™ = ZPT,n(S)efS-

|wl=n s

The weight f represents a force as follows: when f < 0, polygons with small span will dominate
the partition function, so this corresponds to the “compressed” regime. On the other hand, when f > 0,
polygons with large span will dominate the partition function, corresponding to the “stretched” regime.

The free energy of polygons in T is defined as

.1
Fr(f) = lim —log Zr.u(f)-
Atapour et al.|(2009) showed that Fr( f) exists for all f. It is a convex function of f, and is thus continuous
and almost-everywhere differentiable.
Note that for this model, the grand canonical partition function is given by

Gr(fi2) =3 Zea(He™ =33 prals)ef e, @)

n S

which is a two-variable generating function for pr ,,(s). For fixed f, the free energy defined above de-
termines the radius of convergence of Gr(f, 2); specifically, Gr(f, z) converges for all z < —Frp(f).
Transfer-matrix arguments given in |Atapour| (2008); |Atapour et al.| (2009) establish that G(f, z) is a
rational function in e/ and e?.

3 [ — —oo asymptote

In this section we consider the case of compressed polygons. That is, we investigate the behaviour of the
free energy Fr(f) in the limit f — —oo. Some preliminary definitions and results are required before the
main theorem can be stated.
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Fig. 2: A 9-block of the 6 x O tube. This 9-block has length 50.

Given a polygon m € T, a hinge H), of 7 is the set of edges and vertices lying in the intersection of 7
and the y-z plane defined by {(x,y, ) : © = k}. A section Sy, is the set of edges in , in the x direction,
connecting Hy,_1 and Hy. A half-section of Sy, is the set of half-edges in Sy, witheither k—1 <z < k— %
ork—i<az<k

A I-block of T is any non-empty hinge which can occur in a polygon 7 in T, together with any half-
edges of 7 in the two adjacent half-sections. The length of a 1-block is the sum of the lengths of all its
edges and half-edges. It is thus natural to view a 1-block as the part of a polygon between two half-integer
planes with z-coordinates k + % with k € Z.

An s-block is then any connected sequence of s 1-blocks, the entirety of which can occur in a polygon
in T. The length of an s-block is the sum of the lengths of its constituent 1-blocks. Let bt ; be the number
of s-blocks in T, counted up to translation in the z-direction. See Figure 2| for an example.

Lemma 1 The limit )
Br = lim —logbr s 3)
sS—00 §

exists and is finite.

Proof: Any (s + t)-block can be cut into an s-block and a ¢-block; we thus have

br,s++ < by sbr .

So {log br s} is a subadditive sequence, and the limit (@) exists. We clearly have brs > 1forall s > 1,

so that S is finite. a

A 1-block is called full (no empty vertices) if its length is equal to W = (L + 1)(M + 1). An s-block
is full if every one of its constituent 1-blocks is full. Let b%s be the number of full s-blocks in T. The
following lemma can be proved in the same way as Lemmal ]

Lemma 2 The limit )
0 _ i+ 0
Bt = SILHJO . log by 4)
exists and is finite.

We are now able to state the main theorem of this section.
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Theorem 1 For any tube size L x M, in the limit f — —oo the free energy Fr(f) is asymptotic to
(B + f)/W, where W = (L + 1)(M + 1). That is,

fEIEIOO (]:’]I‘(f) - hf/) = B*% ®)

3.1 Density functions

There are a number of results from Chapter 3 of Janse van Rensburg| (2000) which will be important for
the proof of Theorem [T} For this reason we explicitly state them here. We begin with some necessary
assumptions. For the remainder of this section k£ and m will be non-negative integers representing respec-
tively the size and energy of an object. For the models in this paper, an example object is a polygon, with
its size being its length n and its energy being its span s; however, we will also consider the opposite
scenario where a polygon’s size is given by its span and its energy by its length.

Assumptions 1 (Assumptions 3.1 of |Janse van Rensburg| (2000)) Ler uy(m) be the number of objects
of size k and energy m. Assume that ui,(m) satisfies the following properties:

(1) There exists a constant K > 0 such that 0 < ug(m) < K* for each value of k and m.

(2) There exist finite integers Ay and By, and a real constant C satisfying 0 < Ax < By < Ck such
that up(m) > 0 for A, < m < By, and up(m) = 0 otherwise.

(3) The values uy,(m) satisfy the following supermultiplicative inequality for each value of k1, mq, ko, mo
such that ug, (my) > 0 and ug, (mg) > 0:

Uk, (M1)Uky (M2) < Upy 41, (M1 + M2). (6)
We now add a further assumption which is not required in |[Janse van Rensburg| (2000), but will make

calculations here somewhat simpler.

Assumptions 2 The following limits exist, and satisfy

A= lim&< lim%

k—o0 k—oo k

= B.
Theorem 2 (Theorems 3.4 and 3.5 of Janse van Rensburg|(2000)) Let uy(m) be a sequence satisfying
Assumptionsand Then if e € (A, B), the density function D(e) is defined by the limit

1

logD(e) = lerr;o .

log ug (|ek]) -

The function log D(€) is concave in € over (A, B), and is continuous and almost-everywhere differentiable.

We next define partition functions and relate them to the density function D(e). Let

Uk(z) = Z ug(m)e*™.
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Theorem 3 (Theorems 3.6, 3.17 and 3.19 of Janse van Rensburg| (2000)) The limit

1
E(z) = lim %logUk(z)

n— o0
exists for all z. Moreover,

E(z) = sup {logD(e) +ez}.
A<e<B

Our final preliminary result is a generalisation of equation (3.4) in Janse van Rensburg| (2000). For
brevity the proof is omitted in this extended abstract, but will be published with the full version of the
paper elsewhere.

Lemma 3 Let Ty, be a sequence satisfying Ay, < Ty < By and Ty, = Bk + o(k). Moreover, assume that
By < Bk for all k sufficiently large. Then

1
logD(B™) := lim logD(e) > limsup Elog ug(Tk).

e—>B~ k—o00

We also note the following consequence (see for example (Janse van Rensburg, 2000, equation (3.15)))
of the concavity of log D(¢) and Theorem

E(z) ~ lim logD(e) + ez as z—>o00, and &(z)~ lim logD(e) +ez as z— —oo. (7)

e—B~ e—~At

3.2 The proof

We begin with some more definitions. Let Py be the set of those polygons m € Pr which satisfy the
additional constraints:

e 71 has span s > 2,

e 7 contains the edge (0,0,0)—(0, 1, 0) and no other edges in the plane x = 0,

e 7 contains the edge (s,0,0)— (s, 1,0) and no other edges in the plane z = s, and
e 7 contains no edges in the plane x = s — 1.

Let pj*r’n(s) be the number of polygons in Py with length n and span s. We define a partition function
analogous to Z ,,(f):

Ziu(f) =Y prals)e™.

Lemma 4 Py polygons have a free energy

Moreover, F£(f) = Fr(f).
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Proof: If (L, M) = (1,0) then Z7 , (f) = ef("=2)/2 and the result is trivial. Otherwise, at least one of
the statements L > 2 or M > 1 is true, and hence also W > 2.

We show that the sequence pr ,, (s) satisfies Assumptions and with size £ = n and energy m = s,
so that Theorem 3| can be applied.

(1) Using K = 6 suffices to satisfy condition (1).

(2) The numbers A,, and B, (respectively the minimum and maximum possible spans for a P; polygon

of length n) are
n—=6 n—2
A, = 2 B, = .

It can be shown by construction that pq*hn(s) > 0 for each even n and each s such that A4, <
s < By, so that taking C' = 1/2 gives condition (2). Note that A = lim,,_,o, A,,/n = 1/W and
B =lim,, 00 By /n=1/2with A < B for any W > 2, so that Assumptionsalso hold.

(3) The set Py has been defined so that any two polygons 71, 72 in P can be concatenated in a way
that preserves both total length and total span. Let 7 have span s;, and define e; to be the single
edge of m; with maximal x-coordinate and es to be the edge of 7o with minimal z-coordinate. Then

i. Translate 2 so that e; and e, coincide, and delete those two edges.

ii. If L > 2 then replace the edge (s; — 1,1,0)—(s1, 1, 0) with the three edges
(s1 —1,1,0)0—(s1 — 1,2,0)—(s1,2,0)—(s1, 1,0).
Otherwise if (L, M) = (1, 1) then replace the edge (s; — 1,1,0)—(s1, 1, 0) with the edges
(s1 —1,1,0)—(s1 — 1,1,1)—(s1,1,1)—(s1,1,0).

So any two polygons 71, o in Pr, of lengths n; and no and spans s; and s, can be concatenated
to give another polygon in Py, of length ¢ 4 ng and span s; + so. Thus

p{‘,nl (Sl)p:ﬁ',nz (82) S p%,nl-l—ng (81 + 32)' (8)

Since P; C Pr, we have F(f) < Fr(f). For brevity we omit the proof of the reverse inequality; it
follows from the fact that any Pr polygon can be converted into a Py polygon by adding a fixed number
of edges which extend the span by no more than a constant amount. O

Polygons in Pr. then have a density function
x 1 .
log St (e) = nh_}II;O - log pt, (Len])
with

Fr(f)=sup {logSp(e) +ef}. 9)
1/W<e<1/2
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The approach to proving Theorem [I| will involve the ‘dual’ object to F(f). Let g3 ((n) = pf ,(5).
(We introduce this quantity to make it clear that we are now interpreting the span of a polygon as its ‘size’
and the length of a polygon as its ‘energy’.) Define

Qi o(2) =D ar s(n)e™.

Lemma S The free energy
Gr(z) = lim —logQr (2)
exists for all z.

Proof: The case (L, M) = (1,0) is again trivial, so we can take at least one of L > 2 or M > 1 to be
true.
We show that the sequence ¢y ,(n) satisfies Assumptions with one minor caveat.

(1) Since qq*rys(n) < by s11, using K = (br,1)? suffices to satisfy condition (1).

(2) The numbers A, and B, (respectively the minimum and maximum possible lengths of a P} polygon
of span s) are

As=2(s+1)

B — Wi(s—2)4+6 if W orseven
* | W(s—2)+5 if W and s odd,

and C' = W + 6. However, note that q{is(n) > 0 only if n is even. Condition (2) can then be met
by letting the energy of a polygon be its half-length, rather than its length. Adjusting everything to
account for this essentially amounts to taking n — 7/2 in the definitions of ¢3 ((n) and Q7 ,(2),
and likewise dividing the values of A, and By by 2. This is straightforward, so we will in general
continue to use length instead of half-length. Clearly Assumptions[2]hold with A =2 and B = W.

(3) The inequality (8) can be rewritten as
q'l?sl (nl)(ff‘@ (n2) < qa;,slntsQ (nl + n2)' O

It is now the asymptotic behaviour of G#(z) as z — oo in which we are interested, and we will see later
that this is related, in a very simple way, to the behaviour of Fr(f) as f — —oo. We once again make
use of a density function. By Theorem [3|we have a ‘length density’ function:

log L1(a)= lim log gy (|as]). (10)
S$—00 ’
The function log £+ () is finite and concave for o € (2, W). The inverse Legendre transform is then

Gi(z) = sup {logLy(a)+ az}. (11)
2<a<W

From (7) it follows that the behaviour of G(z) as z — oo is determined by the behaviour of log £} ()
as « — W ™. This behaviour is explored next by obtaining upper and lower bounds.
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Lemma 6 For any tube size L x M, the density function L} () satisfies

log L3(W™) = lim log L(a) < By. (12)

Proof: The following argument is inspired by a proof of Rychlewski and Whittington| (2011) regarding
adsorbing self-avoiding walks.

Let j{f’s(m) be the number of Py polygons of span s and length at least m. Write s + 1 = pr + ¢ with
0 < ¢ < r, and think of a polygon of span s as the connected sequence of p r-blocks and (possibly) one
g-block.

If a polygon has span s and length n then it has W (s+1) —n unoccupied vertices within its s+1 hinges.
We will consider j1 (| as]), so define u = W (s+1)—|as], the maximum number of unoccupied vertices
in a polygon with at least length | s ]. Considering all possible choices for the number & of r-blocks with
unoccupied vertices, we have

. —~ (P -
dallas) = 3 (7)0m 402, 0m
k=0
For § > 0 take  sufficiently large so that by, < e/’ and b§. . < (B+9)r Then

ra(las]) <brg Y (Z) T (Br+6) o (p—k)r(B2+6)
k=0

= b gD Y (z) Gor(Br—B9). (13)
k=0

Noting that p ~ s/r, take « sufficiently close to W so that u < p/2. Then the largest summand of is
the last one, so

g (las]) < bT)qerp(ﬁq?Jré) (u+1) (p) eru(Br—F7)
' U
Take logs, divide by s and apply Stirling’s approximation:

rp(B3+0) | ru(Br = BY)
S S

1
+ 5 log(u + 1)

- - 1
—plog(pu)+ulog(p u)_’_O(ogs).
s P s U s

1 1
3 log jit s(las]) < 3 log br,q +

With r fixed, take a lim sup as s — oo, to get

1
log L1(cr) < limsup 3 log j1,s(Levs])

< B+ 6+ (W —a)(Br — %)f%log(lfr(Wfoz))Jr(Wfa)log (Tl

Now taking « — W~ we find
log Li(W™) < B3 +6.

Since § can be arbitrarily small, the proof is complete. a
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Lemma 7 For any tube size L x M, the density function L} () satisfies

log Ly(W™) = lim log L3(a) > By (14)

a—W

Proof: By definition, any s-block or full s-block can be ‘completed’, by adding edges at one or both ends,
to form a self-avoiding polygon of span > s+ 1. In particular, there exist constants ¢ and c so that any full
s-block can be completed to a unique Pr. polygon of span s + ¢ and length between Ws and Ws 4 c. So

Ws+c

Ts— Z r,5+4(n (15)

n=Ws

Now let n'?) be the value of n between W's and W's +c which maximises g ., ,(n) (if there are multiple
such values, take the smallest one). We then have

b7.s < (¢ +1)at ope (n3F)-

Observe that n** is a sequence which satisfies the conditions of Lemma [3} it is by definition a value
between the minimum and maximum lengths for P; polygons of span s, and n*** = W's + o(s). So

b9 ¢
log L2 > i L) axy > i log | —2=t lim —1 9.
og LT(W7™) imsup 0g g5 (1) im sup og<c+1 sggos oght , = py. O

Corollary 1 In the limit as z — oo, the free energy G+ (z) is asymptotic to W z + (8. That is,

lim (G3(z) — Wz) = By.

Z—00

Proof: By (7), for z — oo in (1)), the supremum is found by taking v — W . In this case log £ (o) —
3. O

It now remains to establish the relationship between the two density functions S;(¢) and £ («).

Proof of Theorem For given rational a € (2, W), we have

« 1 .
log L1(a) = 5151010 5 log g1, (|as]).

If we take this limit through values of s such that s/« is an integer, then this can be written as

1
log Lz(a) = lim —— 5o 108 47 4/ (s )fslggoglogpqrs(sm) = alog St(1/a).

Continuity extends this to all € (2, W), and for € € (1/W, 1/2) it can alternatively be written as

elog L3(1/€) = log Sy (e). (16)
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Now consider () in the case that f — —oc. From (7), we find the supremum by taking ¢ — (1/W)¥.
By and Lemmas[6|and 7]

* . * 1 * — ﬂo
log St ((1/W)7F) := E_}(llll/%vrr log St(€) = 377 log LT(W™) = WT’

so that F5(f) ~ f/W + B2/W as f — —oo. Recalling that Fr(f) = Fz(f) completes the theorem. O

Note that the arguments above also establish that

Ws+ec 1 6'(]1)*
slggo—log Zv:v Prn(s+1) | = lim @1 08 PT,pymax () = W

In particular, the polygons counted in the sum on the left include those which are maximally compressed,
i.e. where s = [n/W1.

4 Further results
In addition to Theorem we are in fact able to determine the behaviour of Fr(f) in the f — oo limit.

Theorem 4 For any tube size L x M, as f — oo the free energy Fr(f) is asymptotic to f /2. That is,

lim <}'T(f) — f) =0. 17
f—o0 2

We also conjecture that the f — —oo asymptote found in Theorem|[T]is related to a certain subclass of
Pr polygons. We say a polygon 7 of length n and span s is Hamiltonian if 7 is also a full (s 4 1)-block;
equivalently, the length and span satisfy n = W (s + 1). (Note that, because n must be even, if W is odd
then such polygons only exist for odd s.) Let 73111-{ be the set of such polygons, with p%n being the number
of length n. [Eng|(2014)) has shown that such polygons have a growth rate, that is, the limit

1
k= lim —logpl,,

exists. (One must take n through multiples of W if W is even, or multiples of 2W if W is odd.)

Conjecture 1 The growth rates of full s-blocks (counted by span) and of Hamiltonian polygons (counted
by length) are related by

i = 02,

As a result, Fr(f) is asymptotic to k! + f/W as f — —oc.

The FWD-conjecture has been proved in|[Eng|(2014) for Hamiltonian polygons. Hence, if Conjecture/I]
is true, it will allow us to establish for f — —oo that all but exponentially few sufficiently long polygons
in a tube with L. > 2 and M > 1 are knotted, extending the result that was previously known for any
finite f. Conjecture |1/ has been confirmed to hold for a number of small values of L and M. A possible
approach for establishing it for all tube sizes would be to find an appropriate upper bound on the polygon
sum in (T3) in terms of Hamiltonian polygons, but this is not straightforward.
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