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Fully packed loop configurations:
polynomiality and nested arches

Florian Aigner1†

1Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

Abstract. This extended abstract proves that the number of fully packed loop configurations whose link pattern
consists of two noncrossing matchings separated by m nested arches is a polynomial in m. This was conjectured by
Zuber (2004) and for large values of m proved by Caselli et al. (2004).

Résumé. Dans cet article nous prouvons que le nombre de configurations de boucles compactes dont le motif de
liaison consiste en deux couplages non-croisés séparés par m arcs emboı̂tés est un polynôme en m. Ce résultat avait
été conjecturé par Zuber (2004) et prouvé pour les grandes valeurs de m par Caselli et al. (2004).
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1 Introduction
Razumov and Stroganov conjectured in [5] a relation between fully packed loop configurations (short
FPLs) and the ground state vector in the O(1) loop model. This conjectural connection made it possible
to come up with many new conjectures concerning FPLs with certain link patterns, see e. g. [11]. In this
paper we will prove the following

Theorem 1.1 ([11, Conjecture 7]) For noncrossing matchings π ∈ NCn and π′ ∈ NCn′ and an integer
m the number of FPLs with link pattern (π)mπ

′ is a polynomial in m of degree |λ(π)| + |λ(π′)| with
leading coefficient dim(λ(π)) dim(λ(π′))

|λ(π)|!|λ(π′)|! .

The special case for only one matching was completely shown in [2][Theorem 4.2], whereas the general
case was proven only for large values of m, see [2][Theorem 6.7]. With the proof of the Razumov-
Stroganov Conjecture in [1], it was possible to use new methods – namely the theory of wheel polynomials
which was developed in [2], [9] – for solving open problems concerning FPLs. Using integral wheel
polynomials, Fonseca and Zinn-Justin reproved in [4] Theorem 1.1 for the special case of one matching.
By considering another well known family of wheel polynomials we will be able to prove Theorem 1.1.
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(
1 2 3 4 5 6
4 3 2 1 6 5

)
⇔

Fig. 1: An example for a noncrossing matching and its graphical representation.

λ(π) =

Fig. 2: The corresponding Young diagram to the noncrossing matching of the previous example.

2 Preliminaries
2.1 Noncrossing matchings
A noncrossing matching π of size n is a derangement π ∈ S2n with π2 = Id2n such that there exist no in-
tegers 1 ≤ a < b < c < d ≤ 2n with π(a) = c and π(b) = d. We denote by NCn the set of noncrossing
matchings of size n. The number of noncrossing matchings of size n is given by the n-th Catalan number
Cn = 1

n+1

(
2n
n

)
. A noncrossing matching π can be represented graphically by 2n dots which are labeled

from 1 to 2n and two dots are linked by an arc iff their labels are mapped onto each other by π, see Figure
1. In the following we do not want to distinguish between the graphical representation of a noncrossing
matching π and π itself.

A Young diagram is a finite collection of boxes, arranged in left-justified rows and weakly decreasing
row-length from top to bottom (English notation). The noncrossing matchings of size n are in bijection
with the Young diagrams for which the i-th row from the top consists of at most n− i boxes. We construct
for a noncrossing matching π its corresponding Young diagram λ(π) by reading its parenthesis word from
left to right and make an up-step if an opening bracket is read and a right-step if a closing bracket is read.
The Young diagram λ(π) is then the area enclosed by this path and the path taking n consecutive up-steps
followed by n consecutive right-steps, see Figure 2. To keep in mind which size the noncrossing matching
π with corresponding Young diagram λ(π) has and for reasons which will be clear later, we will always
draw these n consecutive up- / right-steps we needed in the above construction when the Young diagram
is depicted Since Young diagrams are in bijection with integer partitions, noncrossing matchings of size
n are in bijection to integer partitions where the i-th summand is less or equal than n − i. The bijection
between Young diagrams and integer partitions is in this work given by setting the i-th summand of a
partition equal to the number of boxes of the i-th row from the top of a partition. For a Young diagram λ
we denote with |λ| the number of its boxes.

Let π, σ be noncrossing matchings of size n or n′ respectively and m a positive integer. We denote by
(π)m the noncrossing matching of size n+m which is obtained by putting m nested arches around π and
by ()m the noncrossing matching which is made out of m consecutive small arches. Further we denote by
πσ the concatenation of π and σ, see Figure 3.
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(π)2 π()2

Fig. 3: This figure shows the noncrossing matchings (π)2 and π()2, where π is as in the above example.

1 2 3 4 5 6

1 2 3 4 5 6

π

e4(π)

Fig. 4: This is an example for the calculation of e4(π) where π is the noncrossing matching of the previous examples.

Let k be the index such that π(k) = 2n. Then define ρ(π) as the rotation of π given by ρ(π)(i) =
π(i− 1) + 1 for 1 < i ≤ 2n and ρ(π)(1) = k+ 1. For 1 ≤ j ≤ 2n define ej : NCn → NCn as the map

ej(π)(k) =



j + 1 k = j

j k = j + 1

π(j + 1) k = π(j)

π(j) k = π(j + 1)

π(k) otherwise

,

where j + 1 is replaced by 1 if j = 2n. It is easy to show that ρ(π) and ej(π) for 1 ≤ j ≤ 2n are again
noncrossing matchings of size n. For a graphical representation of ej see Figure 4.

We can define a partial order on the set NCn of all noncrossing matchings of size n by defining σ ≤ π
for two elements σ, π ∈ NCn if the Young diagram λ(σ) is contained in λ(π). For 2 ≤ j ≤ 2n − 2 we
denote σ ↗j π if λ(π) is obtained from λ(σ) by adding one box with top left corner on the j-th south-east
diagonal, where these diagonals are counted as in Figure 5. This notion is obviously a refinement of the
above defined partial order.
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Fig. 5: The matchings π, σ satisfy the refined order π ↗3 σ.
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Fig. 6: An example of a FPL of size 5 and its link pattern.

2.2 Fully packed loop configurations
A fully packed loop configuration (or short FPL) F of size n is a subgraph of the n × n grid with n
external edges on every side with the following two properties:

1. F contains all vertices of the n× n grid and every vertex of F has degree 2.

2. F contains every other external edge, beginning with the topmost at the left side.

We enumerate the external edges in a FPL counter-clockwise with 1 up to 2n, see Figure 6. A FPL
consists out of paths which do not cross each other, the closed ones are called Loops. We can assign to
every FPL F a noncrossing matching π(F ) by setting π(F )(i) the label of the external edge which is
connected to the i-th external edge for 1 ≤ i ≤ 2n, and call π(F ) the link pattern of F .

It is well known that there exists a bijection between all FPLs of size n and all Alternating Sign Matrices
(or short ASMs) of size n, see for example [11]. Hence the number An of all FPLs of size n is equals to
the number An of ASMs of size n, see [8]

An =

n∏
i=1

(3i− 2)!

(n+ i− 1)!
.

Let π be a noncrossing matching of size n, we denote with Aπ the number of all FPLs of size n with link
pattern π. In [7] it was shown that the number of FPLs with link pattern π is invariant under the action of
the dihedral group Dn onto the noncrossing matchings of size n.

2.3 Wheel polynomials
We will introduce in this section wheel polynomials only succinctly, for a more detailed overview see for
example [6, Section 2].

For a positive integer n a polynomial p ∈ Q(q)[z1, . . . , z2n] is called wheel polynomial of order n if p
is a homogeneous polynomial of degree n(n− 1) and satisfies the wheel condition:

p(z1, . . . , z2n)|q4zi=q2zj=zk = 0,

for all 1 ≤ i < j < k ≤ 2n. Denote with Wn[z] the space of all wheel polynomials of order n with
coefficients in Q(q).
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Definition 2.1 Let n be an integer and k ∈ {1, . . . , 2n}. We define the linear maps Sk, Dk : Q(q)[z1, . . . , z2n] −→
Q(q)[z1, . . . , z2n] via

Sk(f)(z1, . . . , z2n) := f(z1, . . . , zk−1, zk+1, zk, zk+2, . . . , z2n),

Dk(f)(z1, . . . , z2n) :=
qzk − q−1zk+1

zk+1 − zk
(Sk(f)(z1, . . . , z2n)− f(z1, . . . , z2n)),

for f ∈ Q(q)[z1, . . . , z2n] and 2n+ 1 is replaced by 1 for k = 2n.

It is not difficult to show the following

Lemma 2.2 1. The space Wn[z] of all wheel polynomials of order n is closed under the action of Dk

for k ∈ {1, . . . , 2n}.

2. For all k ∈ {1, . . . , 2n} and all polynomials f, g ∈ Q(q)[z1, . . . , z2n] one has:

Dk(fg) = Dk(f)Sk(g) + fDk(g).

This product rule can also be stated more generally for an integer m and fi ∈ Q(q)[z1, . . . , z2n]
for 1 ≤ i ≤ m:

Dk(

m∏
i=1

fi) =

m∑
i=1

i−1∏
j=1

fj ×Dk(fi)× Sk(

m∏
j=i+1

fj)

 .

The next theorem describes a Q(q)-basis of the space Wn[z] of all wheel polynomials of order n and a
recursion to calculate them. However the most important result for us is that we can calculate the number
of FPLs with a certain noncrossing matching as link pattern by evaluating the proper element of this basis
at zi = 1 for all 1 ≤ i ≤ 2n. The proofs for the statements can be found in [9, Section 4], whereas the
proof of the last statement also requires the Razumov-Stroganov Conjecture, which was proven in [1].

Theorem 2.3 There exists a Q(q)-basis {Ψπ |π ∈ NCn} ofWn[z] indexed by the noncrossing matchings
of size n with the following properties:

1. Ψ()n = (q − q−1)−n(n−1)
∏

1≤i<j≤n(qzi − q−1zj)(qzn+i − q−1zn+j).

2. Ψπ(z) = Dj(Ψσ)−
∑
τ∈e−1

j (σ)\{σ,π}Ψτ , if σ ↗j π.

3. Ψρ−1(π)(z1, . . . , z2n) = Ψπ(z2, . . . , z2n, q
6z1).

4. Set q = e
2πi
3 a root of unity, then Ψπ(1, . . . , 1) = Aπ holds for all π ∈ NCn.

It is easy to prove that the set of preimages of the noncrossing matching σ under ej as in the above
setting is a subset of {σ, π} ∪ {τ ∈ NCn : τ < σ}. Since noncrossing matchings and Dyck paths are in
bijection we can define for all 1 ≤ j ≤ 2n a map corresponding to ej for Dyck paths. With the explicit
description of these maps in [3, Proposition 2.1] it is easy to prove the following

Lemma 2.4 Let α, β be noncrossing matchings of size n or n′ respectively and m an integer. Then

e−12(n+m)+i((α)mβ) = {(α)mσ|ei(σ) = β},

for 2 ≤ i ≤ 2n′ − 2.
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Remark 2.5 Let π be a noncrossing matching of size n and denote with Λπ the set of indices such that all
boxes of λ(π) lie on diagonals which are indexed with numbers in Λπ . One can show inductively using
the first two statements of the Theorem 2.3, that Ψπ is a sum of terms of the form

Di1 ◦ · · · ◦Dim(Ψ()n),

wherem ≤ |λ(π)| and i1, · · · im ∈ Λπ . The number of summands and the indices i1, . . . , im appearing in
the summands depend only on shape of the Young diagram λ(π). This implies that for any positive integer
m the wheel polynomial Ψ(π)m has the same presentation as a sum of the above form as Ψπ except that
Ψ()n is replaced by Ψ()n+m

in the summands. Hence this presentation of Ψ(π)m as a sum depends only
on π and therefore independent on m.

3 The proof
The following notations are only for the sake of brevity:

f(i, j) :=
qzi − q−1zj
q − q−1

, g(i) :=
q − q−1zi
q − q−1

, h(i) :=
qzi − q−1

q − q−1
,

for 1 ≤ i 6= j ≤ 2n. One verifies by simple calculation:

Lemma 3.1 For 1 ≤ i, j, k ≤ 2n and i 6= j one has

1. Dk(f(i, j)) =



f(k, k + 1) (i, j) = (k + 1, k)

−f(k, k + 1) (i, j) = (k, k + 1)

qf(k, k + 1) i = k; j 6= k, k + 1

−qf(k, k + 1) i = k + 1; j 6= k, k + 1

−q−1f(k, k + 1) j = k; i 6= k, k + 1

q−1f(k, k + 1) j = k + 1; i 6= k, k + 1

0 {i, j} ∩ {k, k + 1} = ∅

2. Dk(g(i)) =


−q−1f(k, k + 1) i = k

q−1f(k, k + 1) i = k + 1

0 otherwise

3. Dk(h(i)) =


qf(k, k + 1) i = k

−qf(k, k + 1) i = k + 1

0 otherwise
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4. Let m be a positive integer. Then the following holds:

Dk(f(i, j)m) = Dk(f(i, j))

m−1∑
l=0

f(i, j)lSk(f(i, j)m−1−l),

Dk(g(i)m) = Dk(g(i))

m−1∑
l=0

g(i)lSk(g(i)m−1−l),

Dk(h(i)m) = Dk(h(i))

m−1∑
l=0

h(i)lSk(h(i)m−1−l).

We use the following notation:

P (αi,j |βi|γi) :=
∏

1≤i6=j≤2n
f(i, j)αi,j

2n∏
i=1

g(i)βih(i)γi .

Theorem 3.2 Let P = P (αi,j |βi|γi), m an integer and i1, . . . , im ∈ {1, . . . , 2n}. Then there exists a
polynomial Q ∈ Q(q)[y1, . . . , y2n(2n+1)] of degree at most m such that

(Di1 ◦ · · · ◦Dim) (P )|z1=...=z2n=1 = Q((αi,j), (βi), (γi)).

The following example is included to sketch the main idea of the proof of the above Theorem and to
help the reader in understanding it.

Example 3.3 Let n = m = im = 1 Then we can calculate D1(P )z1=z2=1 explicitly, where m,n, im and
P are as above. By using Lemma 2.2 and Lemma 3.1 we obtain for D1(P ) the following expression:

D1(P ) =D1

(
f(1, 2)α1,2f(2, 1)α2,1g(1)β1g(2)β2h(1)γ1h(2)γ2

)
=−

α1,2∑
t=1

f(1, 2)α1,2+α2,1−t+1f(2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1+

+

α2,1∑
t=1

f(1, 2)α1,2+α2,1−t+1f(2, 1)t−1g(1)β2g(2)β1h(1)γ2h(2)γ1+

− q−1
β1∑
t=1

f(1, 2)α1,2+1f(2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ1+

+ q−1
β2∑
t=1

f(1, 2)α1,2+1f(2, 1)α2,1g(1)β1+β2−tg(2)t−1h(1)γ2h(2)γ2+

+ q

γ1∑
t=1

f(1, 2)α1,2+1f(2, 1)α2,1g(1)β1g(2)β2h(1)γ1+γ2−th(2)t−1+

− q
γ2∑
t=1

f(1, 2)α1,2+1f(2, 1)α2,1g(1)β1g(2)β2h(1)γ1+γ2−th(2)t−1.
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If we evaluate this for z1 = z2 = 1 we obtain:

D1(P )z1=z2=1 = α2,1 − α1,2 + q−1(β2 − β1) + q(γ1 − γ2).

Proof of Theorem 3.2: We prove the theorem by induction on m. The statement is trivial for m = 0,
hence let m > 0 and set k := im. We can write

DkP =
∑
s∈S

asPs,

for a finite set S of indices, as ∈ {±1,±q,±q−1} and Ps = P (αi,j;s|βi;s|γi;s) for all s ∈ S. Indeed
we can use iteratively the second statement of Lemma 2.2 to split the product into a sum. This splitting
depends on the order of the factors of the product, the order we will apply is the one which will be used
for the calculations in (1) and was used in Example 3.3. Lemma 3.1 implies that every summand is of the
form Ps = P (αi,j;s|βi;s|γi;s) and the coefficients as are as stated above. Therefore we need to calculate

Di1 ◦ · · · ◦Dim−1

(∑
s∈S

asPs

)
=
∑
s∈S

asDi1 ◦ · · · ◦Dim−1(Ps).

For this calculation we split S into subsets Ai,j , Bi and Ci with 1 ≤ i 6= j ≤ 2n by using Lemma 2.2 in
the following way:

DkP = Dk

 ∏
1≤i 6=j≤2n

f(i, j)αi,j
2n∏
i=1

g(i)βih(i)γi

 (1)

=
∑

1≤i 6=j≤2n

∏
1≤i′ 6=j′≤2n

(i′<i)∨(i′=i,j′<j)

f(i′, j′)αi′,j′ ×Dk(f(i, j)αi,j )×

× Sk

 ∏
1≤i′i6=j′≤2n

(i′>i)∨(i′=i,j′>j)

f(i′, j′)αi′,j′
2n∏
i′=1

g(i′)βi′h(i′)γi′

+

+

2n∑
i=1

∏
1≤i′ 6=j′≤2n

f(i′, j′)αi′,j′
i−1∏
i′=1

g(i′)βi′ ×Dk(g(i)βi)× Sk

(
2n∏

i′=i+1

g(i′)βi′
2n∏
i′=1

h(i′)γi′
)

+

+

2n∑
i=1

∏
1≤i′ 6=j′≤2n

f(i′, j′)αi′,j′
2n∏
i′=1

g(i′)βi′
i−1∏
i′=1

h(i′)γi′ ×Dk(h(i)γi)× Sk

(
2n∏

i′=i+1

h(i′)γi′
)
.

We define Ai,j ⊂ S to be the set of all s ∈ S such that the summands Ps originate from calculating the
summand in Equation 1 with the factor Dk (f(i, j)αi,j ) explicitly – this can be done by using Lemma 3.1.
The sets Bi and Ci are defined analogously where the role of f(i, j)αi,j is replaced by g(i)βi or h(i)γi

respectively. Hence we can write the set S as the union

S =
⋃

1≤i6=j≤2n
Ai,j ∪

⋃
1≤i≤2n

Bi ∪
⋃

1≤i≤2n
Ci.
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Lemma 3.1 implies Dk(f(i, j)) = 0 for {i, j} ∩ {k, k + 1} = ∅ and Dk(g(i)) = Dk(h(i)) = 0 for
i /∈ {k, k + 1}. Hence the sets Ai,j , Bi, Ci are empty in these cases.

Let 1 ≤ i 6= j ≤ 2n be fixed with {i, j} ∩ {k, k + 1} 6= ∅ and let σ ∈ S2n be the permutation
σ = (k, k + 1). Set Λi,j = {(i′, j′) : 1 ≤ i′ 6= j′ ≤ 2n, (i′ < i) ∨ (i′ = i, j′ < j)}. Then the definition
of Ai,j and Lemma 3.1 implies for all (i′, j′) /∈ {(i, j), (σ(i), σ(j)), (k, k + 1)} and all s ∈ Ai,j :

αi′,j′;s =


αi′,j′ {i′, j′} ∩ {k, k + 1} = ∅ or (i′, j′), (σ(i′), σ(j′)) ∈ Λi,j

αi′,j′ + ασ(i′),σ(j′) {i′, j′} ∩ {k, k + 1} 6= ∅, (i′, j′) ∈ Λi,j , (σ(i′), σ(j′)) /∈ Λi,j

0 {i′, j′} ∩ {k, k + 1} 6= ∅, (i′, j′) /∈ Λi,j , (σ(i′), σ(j′)) ∈ Λi,j

ασ(i′),σ(j′) {i′, j′} ∩ {k, k + 1} 6= ∅, (i′, j′), (σ(i′), σ(j′)) /∈ Λi,j

For (k, k + 1) /∈ {(i, j), (σ(i), σ(j))} one obtains the parameter αk,k+1;s by adding one to the value of
αi′,j′ in the above description for (i′, j′) = (k, k + 1).Further we obtain βi′;s = βσ(i′) and γi′;s = γσ(i′)
for all 1 ≤ i′ ≤ 2n and s ∈ Ai,j . By Lemma 3.1 the constant as is for all s ∈ Ai,j determined by the
corresponding constant of Dk(f(i, j)) and hence not depending on s. The last statement of Lemma 3.1
implies that we can list the elements ofAi,j = {s1, . . . , sαi,j} such that we have the following description
for the remaining parameters αi,j;s, ασ(i),σ(j);s :

αi,j;st =


αi,j + αj,i + 1− t i = k, j = k + 1

αi,j − t i = k + 1, j = k

αi,j + ασ(i),σ(j) − t {i, j} ∩ {k, k + 1} = k

αi,j − t {i, j} ∩ {k, k + 1} = k + 1

,

ασ(i),σ(j);st =

{
αi,j + αj,i − αi,j;st {i, j} = {k, k + 1}
αi,j + ασ(i),σ(j) − αi,j;st − 1 otherwise

,

with 1 ≤ t ≤ αi,j .

For the sets Bi, Ci and i ∈ {k, k + 1} we have an analogue description as above, whereas the only
parameters depending on s ∈ Bi or s ∈ Ci respectively are given in the case of Bi by

βk;st = βk + βk+1 − t, βk+1;st = t− 1,

with 1 ≤ t ≤ βi and in the case of Ci by

γk;st = γk + γk+1 − t, γk+1;st = t− 1,

with 1 ≤ t ≤ γi.

By induction we know that Di1 ◦ · · · ◦ Dim−1
(P (αi,j;s|βi;s|γi;s))|z1=...=z2n=1 is a polynomial Q′

of degree at most m − 1 in (αi,j;s), (βi;s), (γi;s) for all s ∈ S. The above description implies that if
we restrict ourself to s ∈ Ai,j , s ∈ Bi or s ∈ Ci respectively, as is invariant in s, the parameters
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(αi,j;s), (βi;s), (γi;s) are linear combinations of (αi,j), (βi), (γi) and in two cases also depending linearly
on a parameter t which runs from 1 up to the cardinality of the set Ai,j , Bi or Ci respectively. Hence the
sum ∑

s∈Ai,j
asDi1 ◦ · · · ◦Dim−1

(Ps)|z1=···=z2n=1,

and the analogous sums for s ∈ Bi or s ∈ Ci respectively are polynomials in (αi,j), (βi), (γi) of degree
at most m. Therefore

Di1 ◦ · · · ◦Dim(P ) =
∑
s∈S

asDi1 ◦ · · · ◦Dim−1(Ps)|z1=...=z2n=1

is a polynomial in (αi,j), (βi), (γi) of degree at most m.
2

Proof of Theorem 1.1:
In the following we will show that the integerA(π)mπ′ of FPLs with link pattern (π)mπ

′ is a polynomial
in m. Together with [2][Theorem 6.7], which states that A(π)mπ′ is a polynomial in m with requested
degree and leading coefficient for large values of m, this proves the theorem.

Denote the corresponding partition of π by (λ1, · · · , λp) and let q = e
2πi
3 throughout the proof. By

Theorem 2.3, the number A(π)mπ′ is given by

A(π)mπ′ = Ψ(π)mπ′(1, . . . , 1).

We calculate Ψ(π)mπ′ in the following three steps:

1. First we calculate Ψ(π)m+n′
. The Young diagram corresponding to (π)m+n′ consists of |λ(π)|

boxes which lie on the south-east-diagonals which are indexed by the numbersm+n′+2, . . . ,m+
2n + n′ − 2. Hence by the recursion in Theorem 2.3 the wheel polynomial Ψ(π)m+n′

is a sum of

terms of the form Di1 ◦ · · · ◦ Dik

(
Ψ()m+n+n′

)
– as explained in Remark 2.5 – over k ≤ |λ(π)|

and i1, . . . , ik ∈ {m+ n′ + 2, . . . ,m+ 2n+ n′ − 2}. As mentioned in Remark 2.5, the number of
summands and the indices ij of the linear maps Dij in the summands depend only on π and not on
m.

2. Let σ be the noncrossing matching of size m + n + n′ with corresponding integer partition
(m+ n, . . . ,m+ n︸ ︷︷ ︸

n′ times

, λ1, . . . , λp), the Young diagram of σ is depictured in Figure 7. Using the

third statement of Theorem 2.3 together with q3 = 1 we obtain

Ψσ(z1, . . . , z2(m+n+n′)) = Ψρ−n′ ((π)m+n′ )
(z1, . . . , z2(m+n+n′)) =

= Ψ(π)m+n′
(zn′+1, . . . , z2(m+n+n′), z1, . . . , zn′).

Therefore Ψσ is a sum over terms of the form Di1 ◦ · · · ◦Dik

(
Ψρ−n′ ()m+n+n′

)
, where k ≤ |λ(π)|

and i1, . . . , ik ∈ {m+ 2, . . . ,m+ 2(n− 1)}.
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π

()n′

m

n

n′ n′

Fig. 7: The Young diagram corresponding to σ.

3. Since σ < (π)mπ
′ and σ has just |λ(π′)| boxes less than (π)mπ

′, we can calculate Ψ(π)mπ′ recur-
sively using Ψσ as initial value by Theorem 2.3 and Lemma 2.4. The new boxes in the Young
diagram λ((π)mπ

′) lie on the south-east-diagonals which are indexed by the numbers 2(m +
n + 1), . . . , 2(m + n + n′ − 1). Hence, Ψ(π)mπ′ is a sum of terms of the form Di1 ◦ · · · ◦
Dik′

(
Ψρ−n′ ()m+n+n′

)
over k′ ≤ |λ(π)| + |λ(π′)|. Further the number of summands and the

indices ij of the linear maps Dij in the summands depend only on π and π′ and not on m, compare
with Remark 2.5 and Lemma 2.4. By the above considerations and Lemma 2.4, the indices il for
1 ≤ l ≤ k′ satisfy il ∈ {m+ 2, . . . ,m+ 2(n− 1), 2(m+ n+ 1), . . . , 2(m+ n+ n′ − 1)}.

In order to calculate A(π)mπ′ we use the identity

A(π)mπ′ = Ψ(π)mπ′(1, . . . , 1) = Ψρn′ ((π)mπ′)
(1, . . . , 1).

The second identity is true since Ψ(π)mπ′ and Ψρn′ ((π)mπ′)
just differ by a rotation in the variables

z1, . . . , z2(m+n+n′) by Theorem 2.3. By the above considerations Ψρn′ ((π)mπ′)
is a sum of terms of the

form Di1 ◦ · · · ◦Dik′

(
Ψ()m+n+n′

)
with k′ ≤ |λ(π)|+ |λ(π′)| and i1, . . . , ik′ ∈ {2, . . . , n′− 2,m+n′+

2, . . . ,m+2n+n′−2, 2(m+n)+n′+2, . . . , 2(m+n+n′)}. Therefore the linear mapsDil which appear
in the above summands act trivially on the variables zn′+1, . . . zm+n′ , zm+2n+n′+1, . . . , z2(m+n+n′). De-
note by I the set of indices of these zi. The evaluation of the wheel polynomial Ψρn′ ((π)mπ′)|zi=1 for i∈I

is a sum of terms of the form Di1 ◦ · · · ◦Dik′

(
Ψ()m+n+n′ |zi=1 for i∈I

)
= Di1 ◦ · · · ◦Dik′ (P (αi,j |βi|γi))

where

αi,j =

{
1 i, j /∈ I, i < j, (j ≤ (m+ n+ n′) or i > m+ n+ n′)

0 otherwise
,

βi =

{
m i ∈ {m+ n′ + 1, . . . ,m+ n+ n′, 2(m+ n) + n′ + 1, . . . , 2(m+ n+ n′)}
0 otherwise

,

γi =

{
m i ∈ {1, . . . , n′,m+ n+ n′ + 1, . . . ,m+ 2n+ n′}
0 otherwise

.

By Theorem 3.2 the evaluation zi = 1 for the remaining variables in the above expressions are polyno-
mials in (αi,j), (βi), (γi) of degree at most k′ ≤ |λ(π)|+ |λ(π′)|. The explicit choice of (αi,j), (βi), (γi)
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implies that it is actually a polynomial in m of degree at most |λ(π)| + |λ(π′)|. Since A(π)mπ′ is a sum
of these polynomials and the sum is independent of m this proves the theorem. 2

In the above proof we used the fact that in [2] it was already shown that the number A(π)mπ′ is a
polynomial in m with the correct degree and leading coefficient for large values of m. However it seems
to be possible to prove the statement about the degree and the leading coefficient by means of wheel
polynomials - this is work in progress.
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