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Symmetric matrices, Catalan paths, and
correlations
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Abstract. Kenyon and Pemantle (2014) gave a formula for the entries of a square matrix in terms of connected
principal and almost-principal minors. Each entry is an explicit Laurent polynomial whose terms are the weights of
domino tilings of a half Aztec diamond. They conjectured an analogue of this parametrization for symmetric matrices,
where the Laurent monomials are indexed by Catalan paths. In this paper we prove the Kenyon-Pemantle conjecture,
and apply this to a statistics problem pioneered by Joe (2006). Correlation matrices are represented by an explicit
bijection from the cube to the elliptope.

Résumé. Kenyon et Pemantle (2014) ont donné une formule pour les entrées d’une matrice carrée en termes des
mineurs connectés principaux et presque principaux. Chaque entrée est un polynôme de Laurent explicite dont
les termes sont les poids de pavages domino d’un demi-diamant Aztec. Ils ont conjecturé un analogue de cette
paramétrisation pour les matrices symétriques, où les monômes de Laurent sont indexés par des chemins catalans.
Dans cet article, nous prouvons la conjecture de Kenyon-Pemantle, et se rapportent à un problème de statistiques mis
au point par Joe (2006). Les matrices de corrélation sont représentés par une bijection explicite du cube à l’elliptope.
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1 Introduction
In this paper we present a formula for each entry of a symmetric n × n matrix X = (xij) as a Laurent
polynomial in

(
n+1
2

)
distinguished minors of X . Our result verifies a conjecture of Kenyon and Pemantle

from [3]. Let I and J be subsets of [n] = {1, 2, . . . , n} with |I| = |J |. Let XJ
I denote the minor of X

with row indices I and column indices J . Here the indices in I and J are always taken in increasing order.
We will employ shorthand notation iJ := {i} ∪ J . The following signed minors will be used:

pI := (−1)b |I|/2 c ·XI
I

and aij|I := (−1)d |I|/2 e ·XjI
iI for i, j 6∈ I, i 6= j.

We call pI and aij|I the principal and almost-principal minors, respectively. The minors pI , aij|I and
aji|I are called connected if 1 ≤ i < j ≤ n and I = {i+1, i+2, . . . , j−2, j−1}. The 1×1-minors
aij := aij|∅ = xij and pk = xkk are connected when |i− j| = 1 and 1 ≤ k ≤ n.

A Catalan path C is a path in the xy-plane which starts at (0, 0) and ends on the x-axis, always stays
at or above the x-axis, and consists of steps northeast (1, 1) and southeast (1,−1). We say that C has size
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n if its endpoints have distance 2n− 2 from each other. Let Cn denote the set of Catalan paths of size n.
Its cardinality equals the Catalan number

|Cn| =
1

n

(
2n− 2

n− 1

)
, which is 1, 2, 5, 14, 42, 132, 429, 1430, 4862 for n = 2, . . . , 10.

Let Gn denote the planar graph whose vertices are the
(
n+1
2

)
lattice points (x, y) with x ≥ y ≥ 0 and

x + y ≤ 2n − 2 even, and edges are northeast and southeast steps. Thus Cn consists of the paths from
(0, 0) to (2n − 2, 0) in Gn. We label the nodes and regions of Gn as follows. We assign label j to the
node (2j − 2, 0), label aij|I to the node (i + j − 2, j − i), and label pI to the region below that node.
The set I is the numbers between i and j. Thus, connected principal and almost-principal minors of X
are identified in the graph Gn with regions and nodes strictly above the x-axis.

The weight WC (C) of a Catalan path C is a Laurent monomial, derived from the drawing of C in the
graph Gn. Its numerator is the product of the labels aij|I of the nodes of Gn that are local maxima or
local minima of C, and its denominator is the product of the labels pI of the regions which are either
immediately below a local maximum or immediately above a local minimum. Thus WC (C) is a Laurent
monomial of degree≤ 1. There is no lower bound on the degree due to minima on the x-axis; for instance,
a13|2a35|4a57|6a79|8
p2p3p4p5p6p7p8

has degree −3 and appears for n = 9.

The following result was conjectured by Kenyon and Pemantle in [3, Conjecture 1].

Theorem 1.1 The entries of an n× n symmetric matrix X = (xij) satisfy the identity

xij =
∑
C

WC (C), (1)

where the sum is over all Catalan paths C between node i and node j in Gn

Fig. 1: A Catalan path C in the planar graph G4 with weight
a13|2a23a24|3

p2p23p3
.
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For symmetric matrices of size n = 4, Theorem 1.1 states the following formula:

X =


p1 a12

a13|2
p2

+ a12a23
p2

a14|23
p23

+
a12a24|3
p2p3

+
a13|2a34
p2p3

+ a12a23a34
p2p3

+
a13|2a23a24|3
p2p23p3

∗ p2 a23
a24|3
p3

+ a23a34
p3

∗ ∗ p3 a34

∗ ∗ ∗ p4

 (2)

The entry x14 = x41 is the sum of five Laurent monomials, one for each Catalan path from node 1 to node
4. The last term a13|2a23a24|3

p2p23p3
equals WC (C) for the path C shown in Figure 1.

The proof of Theorem 1.1 is given in Section 4. We start in Section 2 by reviewing a theorem of Kenyon
and Pemantle [3] which expresses the entries of an arbitrary square matrix in terms of almost-principal
and principal minors, as a sum of Laurent monomials that are in bijection with domino tilings of a half
Aztec diamond. In Section 3, we give a bijection between these domino tilings and Schröder paths, and
restate their theorem using Schröder paths. We then prove our theorem by constructing a projection from
Schröder paths to Catalan paths and applying the relation (6) among minors of symmetric matrices.

In Section 5 we connect Theorem 1.1 to an application in statistics, developed in work of Joe, Kurow-
icka and Lewandowski [2, 5]. Namely, we focus on symmetric matrices that are positive definite and
have all diagonal entries equal to 1. These are the correlation matrices, and they form a convex set that
is known in optimization as the elliptope [1, 4]. Our formula yields an explicit bijection between the
elliptope and the open cube (−1, 1)(

n
2).

2 Square matrices and tilings of the half Aztec diamond
In this section we review the Kenyon-Pemantle formula in [3, Theorem 4.4]. The half Aztec diamond
HDn of order n is the union of the unit squares whose vertices are in the set

{ (a, b) ∈ Z2 : |a| ≤ n, 0 ≤ b ≤ n, |a|+ |b| ≤ n+ 1 }.

We label the boxes in the bottom row of HDn by the numbers 1 through 2n, from left to right. We label
certain lattice points of HDn by minors as follows. Fix b ∈ [n]. The connected principal minors pI such
that |I| = b are assigned to the lattice points (a, b) with a+b even. The connected almost-principal minors
aij|I with i > j and |I| = b− 1 are assigned to the lattice points (a, b) with a+ b odd. In both cases, the
assignment is from left to right using the lexicographic order on I . The case n = 4 is shown in Figure 2.

Fix integers a and b such that a is even, b is odd, and 1<a<b<2n. We define the colored half Aztec
diamond HDn(a, b) by coloring the boxes of HDn black, grey, or white. First color boxes a and b in the
bottom row black. Let La be the diagonal line of slope 1 through box a−1, and let Lb be the line of slope
−1 through box b + 1. If a box (or any part of it) lies to the left of La or to the right of Lb, then color it
grey. All other boxes are white. A domino tiling (or simply a tiling) of HDn(a, b) is a tiling of the white
boxes by 1×2 and 2×1 rectangles. Let An(a, b) denote the set of tilings of HDn(a, b). Figure 3 shows
the set A4(2, 7), i.e. the six tilings of HD4(2, 7), with lines L2 and L7 superimposed on the tilings.

Each tiling T of the colored half Aztec diamondHDn(a, b) gets a Laurent monomial weight, which we
now define. We regard T as a simple graph whose nodes are the lattice points of HDn, and whose edges
are induced by the edges of the rectangles in the tiling together with the edges of the unit squares outside
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Fig. 2: The half Aztec diamond HD4. The white boxes are to be tiled.

the tiling. An interior lattice point of HDn(a, b) is a lattice point which lies strictly to the right of La and
strictly to the left of Lb. The interior lattice points that will concern us are shown in bold in Figures 2 and
3. Each of these is labeled by a variable v` which is a connected principal or almost-principal minor. The
weight WA (T ) of a tiling T ∈ An(a, b) is defined to be the Laurent monomial

WA (T ) :=
∏
`

v
d(`)−3
` ,

where ` ranges over the interior lattice points of HDn(a, b) and d(`) is the degree of ` in T .

Theorem 2.1 (Kenyon-Pemantle [3]) The entries of an n× n matrix X = (xij) satisfy

xij =
∑

T∈An(2j,2i−1)

WA (T ) for i > j.

Theorem 4.4 in [3] also gives a similar formula for xij with i < j, but we omit that formula, as it is not
needed here.

Example 2.2 Figure 3 shows the six tilings of HD4(2, 7) with their weights. By Theorem 2.1, the upper
right matrix entry for n = 4 is the sum of these six Laurent monomials:

x41 =
a21a32a43
p2p3

+
a31|2a43

p2p3
+
a21a42|3

p2p3
+
a31|2a42|3

p2p3a32
+
a31|2a42|3

p23a32
+
a41|23

p23
. (3)

The full 4× 4 matrix is shown on page 8 of [3], albeit with different notation.

3 Square matrices and Schröder paths
In this section we continue our discussion of arbitrary square matrices. A Schröder path S is a path in
the xy-plane which starts at (0, 0), always stays at or above the x-axis, and consists of steps which are
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Fig. 3: The six tilings of the colored half Aztec diamond HD4(2, 7).

either northeast (1, 1), southeast (1,−1), or horizontal (2, 0). A Schröder path has order n if it ends at
(2n − 4, 0). Let G′n denote the planar graph whose nodes are the lattice points (x, y) with 0 ≤ y ≤ x
and x + y ≤ 2n − 4 even, with edges given by northeast, southeast and horizontal steps. The set Sn of
Schröder paths of order n is identified with the left-to-right paths in G′n from (0, 0) to (2n − 4, 0). The
cardinality of Sn is the Schröder number, which is given by the generating function [7]

∞∑
n=2

|Sn|zn−2 =
1− z −

√
1− 6z + z2

2z
= 1 + 2z + 6z2 + 22z3 + 90z4 + 394z5 + 1806z6 + · · ·

The graph G′n is labeled by connected minors. We assign aij|I to the node (i+j−3, i−j−1) for i > j,
and we assign pI to the triangle below that node. We refer to (2i − 2, 0) as node i. Figure 4 shows the
case n = 4. The six Schröder paths in S4 are shown in Figure 6.

We now define the weight WS (S) of a Schröder path S on G′n. We regard S as a graph with vertices
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Fig. 4: The graph G′
4 encodes the Schröder paths of order 4.

V (S) and edges E(S). Given a Schröder path S on G′n, we define the sets

α(S) = {v ∈ V (S) : v is a weak local maximum of S},
β(S) = {e ∈ E(S) : e is immediately below a weak local minimum of S},
γ(S) = {e ∈ E(S) : e is a horizontal edge of S},
δ(S) = {v ∈ V (S) : v is immediately below a horizontal edge of S},
ε(S) = {e ∈ E(S) : e is immediately below a strict local maximum of S},
ζ(S) = {v ∈ V (S) : v is a strict local minimum (but not an endpoint) of S}.

Each of these is regarded as a monomial by taking the product of all labels. Then we define

WS (S) =
α(S)β(S)

γ(S)δ(S)ε(S)ζ(S)
. (4)

Figure 6 shows the six Schröder paths for n = 4, together with their weights. The sum of these weights is
the Laurent polynomial in (3), which evaluates to the matrix entry x41.

The main result of this section is a reformulation of Theorem 2.1 in terms of Schröder paths. We write
Sn(a, b) for the set of all Schröder paths from node a to node b in G′n.

Theorem 3.1 The entries of an n× n matrix X = (xij) satisfy

xij =
∑

S∈Sn(j,i−1)

WS (S) for i > j.

We shall present a weight-preserving bijection Φ : An(2j, 2i − 1) → Sn(j, i − 1) between tilings
and Schröder paths. Note that we can superimpose the graph G′n on the graph HDn so that the labels
(connected minors) match up. When we do this, the vertex j (respectively, i − 1) of G′n gets identified
with the top right corner of the square 2j (respectively, the top left corner of the square 2i − 1) in HDn.
We draw a Schröder path Φ(T ) on top of a tiling T , as in Figure 5. We may then think of the path as an
element of Sn(j, i− 1).
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Fig. 5: How to construct a Schröder path from a tiling.

More formally, given T ∈ An(2j, 2i − 1), the path Φ(T ) ∈ Sn(j, i − 1) is defined as follows. Its
starting point is the top right corner of square 2j in HDn(2j, 2i − 1). We inductively add steps to Φ(T )
depending on the local behavior of the tiling, as shown in Figure 5. Let x denote the endpoint of the path
that we have built so far. Then we proceed as follows:

• If there is a vertical tile to the east of x, then we add a northeast step to our path.

• If there is a vertical tile to the southeast of x, such that x is at its northwest corner, then we add a
southeast step to our path.

• If there is a horizontal tile to the southeast of x, then add an east step to our path.

• If x is already at the top left corner of square 2i− 1, then we stop.

The map Φ maps the six tilings in Figure 3 to the six Schröder paths in Figure 6.

Lemma 3.2 The map Φ : An(2j, 2i− 1)→ Sn(j, i− 1) is well-defined and is a bijection. Moreover, if
T is a tiling in An(2j, 2i− 1), where i > j, then WS (Φ(T )) = WA (T ).

Thus this bijection is weight-preserving.

4 Back to symmetric matrices
The strategy for proving Theorem 1.1 is to combine Theorem 3.1 with a projection from Schröder paths
to Catalan paths. Let S be any Schröder path in G′n. The associated Catalan path π(S) in Gn is defined
by

• replacing each horizontal step in S with a strict local minimum, i.e. a southeast step followed by a
northeast step;

• adding a northeast step at the beginning of S and a southeast step at the end of S.

If S starts at i and ends at j − 1 in G′n then π(S) starts at i and ends at j in Gn. Figure 7 shows how
four of the six Schröder paths in S4(1, 3) map to four of the five Catalan paths in C4(1, 4). The two other
Schröder paths in Figure 6 map to the Catalan path in Figure 1.
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Fig. 6: The six Schröder paths in S4 together with their weights.

Proposition 4.1 Assume that the labels of the graphs come from a symmetric matrix. The weight of a
Catalan path is the sum of the weights of the Schröder paths in its preimage under the projection π, i.e.∑

S∈π−1(C)

WS (S) = WC (C). (5)

An important ingredient in the proof is the following identity that expresses connected almost-principal
minors of a symmetric n× n matrix in terms of connected principal minors:

a2ij|I − pIpI∪{i,j} − pI∪{i}pI∪{j} = 0, 2 ≤ i < j ≤ n−1, I = {i+1, . . . , j−1}. (6)

Example 4.2 Let S′ and S be the fourth and fifth Schröder paths in Figure 6, with labels given by a
symmetric 4×4 matrix. Using the identity a23 = p23 + p2p3, as in (6), we find

WS (S) + WS (S′) =
a13|2a24|3

p2p3a23
+
a13|2a24|3

p23a23
=

a13|2a24|3a23

p2p23p3
.
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This explains how the six terms in (3) become the five terms of x14 shown in (2). Namely, the weight of
the Catalan path in Figure 1 is the sum of the fourth and fifth terms in (3).

Remark 4.3 The expression in Theorem 1.1 is not the only way to express the entries of a symmetric
matrix in terms of the

(
n
2

)
+
(
n−2
2

)
+n connected almost-principal and principal minors. The prime ideal

of polynomial relations among these minors is generated by the
(
n−2
2

)
quadrics in (6). To show this, we

argue as follows. First, in Theorem 1.1 we have expressed the
(
n+1
2

)
algebraically independent matrix

entries xij in terms of these minors. This ensures that the algebra generated by these minors has Krull
dimension

(
n+1
2

)
. Hence their relation ideal has codimension

(
n−2
2

)
=
(
n
2

)
+
(
n−2
2

)
+ n −

(
n+1
2

)
. The(

n−2
2

)
relations (6) lie in that ideal and they generate a complete intersection. Our final claim is that this

complete intersection is a prime ideal. We deduce this from the fact that none of the aij|I has a square
root in the subalgebra generated by the principal minors. For a concrete example consider n = 4. Here,
our ideal of relations is the principal ideal 〈a223 − p2p3 − p23〉.

5 Parametrizing Correlation Matrices
We now specialize to real symmetric n×n matrices that are positive definite and have all diagonal entries
equal to 1. Such matrices are known as correlation matrices. They play an important role in statistics,
notably in the study of multivariate normal distributions. The set En of all n × n correlation matrices is
an open convex set of dimension

(
n
2

)
. Its closure is a convex body, known in optimization theory [1, 4]

under the name elliptope.
In certain statistical applications it is desirable to generate random correlation matrices. Specifically,

one wishes to sample from the uniform distribution on the elliptope En. A solution to this problem was
given by Joe [2] and further refined by Lewandowski et al. [5]. The underlying geometric idea is to
construct a parametrization from the standard cube:

Ψ : (−1, 1)(
n
2) → En.

The papers [2, 5] describe such maps Ψ that are algebraic and bijective, so they identify the open cube with
the open elliptope. However, the construction is recursive. In what follows we revisit the formula in [2]
and we make it completely explicit. Remarkably, it is precisely the restriction of our Laurent polynomial
parametrization in Theorem 1.1 to the region where all connected principal minors pI are positive and
p1 = · · · = pn = 1.

Let X = (xij) be a real symmetric n × n matrix. We assume that X is positive definite, i.e. all
principal minors pI are strictly positive. In statistics, such an X serves as the covariance matrix of a
normal distribution on Rn, whose partial correlations are given by

ρij|I =
(−1)d |I|/2 e · aij|I√

piI · pjI
where i, j 6∈ I and i < j. (7)

For I = ∅, we obtain the
(
n
2

)
entries of the correlation matrix Y = (yij), namely

yij = ρij =
aij√
pipj

=
xij√
xiixjj

for 1 ≤ i < j ≤ n.

The partial correlation ρij|I in (7) is called connected if I = {i+1, i+2, . . . , j−2, j−1}.
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Theorem 5.1 The
(
n
2

)
entries yij of a correlation matrix can be written uniquely in terms of the

(
n
2

)
connected partial correlations ρij|I . Explicit formulas are derived from those in Theorem 1.1 by first
replacing each occurrence of a parameter aij|I by (−1)d |I|/2 eρij|I

√
piIpjI and thereafter replacing

each occurrence of a parameter pr,r+1,...,s by the product of the
(
s−r+1

2

)
expressions (−1)b |I|/2 c(1 −

ρ2ij|I) where r≤i<j≤s and I = {i+1, i+2, . . . , j−1}. The resulting map Ψ : (ρij|I) 7→ (yij) is a

bjection between (−1, 1)(
n
2) and En.

We now illustrate our parametrization of correlation matrices in the two smallest cases.

Example 5.2 (n = 3) We consider the open 3-dimensional cube defined by the inequalities

−1 < ρ12, ρ23, ρ13|2 < 1.

Our bijection Ψ identifies each point in this cube with a 3× 3 correlation matrix: 1 y12 y13
y12 1 y23
y13 y23 1

 =

 1 ρ12 ρ12ρ23 − ρ13|2(1−ρ212)
1
2 (1−ρ223)

1
2

ρ12 1 ρ23
ρ12ρ23 − ρ13|2(1−ρ212)

1
2 (1−ρ223)

1
2 ρ23 1

 .
One checks that this matrix is positive definite, and, as in [2, Theorem 1], its determinant

det(Y ) = (1− ρ212)(1− ρ223)(1− ρ213|2)

defines the facets of the cube. It is instructive to draw how the boundary of the cube maps onto the
boundary of the elliptope E3. The latter is depicted in [1, Figure 5.8, page 232].

The combinatorics of our planar graph Gn and its Catalan paths can be seen in a different guise in
[2, 5]. These correspond to the structures called D-vines in these papers. Figure 8 shows the stan-
dard D-vine for n = 4. Its edges are naturally labeled with the six coordinates of the cube, namely
ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23. These correspond to the six almost-principal minors aij|I in the labeled
graph G4 in Figure 1.

1 2 3 4
{12} {23} {34}

{13|2} {24|3}

{14|23}

Fig. 8: The standard D-vine for four random variables.
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Fig. 7: The Schröder paths (left) are projected to the Catalan paths (right).
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