Diagonals of rational power series and their uses in combinatorics, number theory, and computer science

J ason Bell (University of Waterloo)

Given a power series $F\left(x_{-} 1, \ldots x_{-} d\right)=\backslash \operatorname{sum} f _\left\{i_{-} 1, \backslash, i_{-} d\right\} x_{-} 1^{\wedge}\left\{i_{-} 1\right\} . . . x _d \wedge\left\{i _d\right\}$, one can
 diagonal of F. When F is the power series expansion of a rational function, the diagonal enjoys of F enjoys many nice properties, including satisfying a linear homogeneous differential equation with polynomial coefficients. Many natural generating functions arising in combinatorial enumeration can be expressed as diagonals and this fact often gives one a wealth of information about congruences of coefficients mod primes and asymptotic information. We give a survey of the theory of diagonals and discuss some more recent results and some of their applications to other areas of mathematics.

