Crystal bases and rigged configurations

Masato Okado (Osaka City University)

In my talk I will report on the present status of our project to understand a certain identity, called $X=M$, that has arisen in the end of the 20th century from the studies of combinatorial aspects of quantum integrable systems. Both sides of $\mathrm{X}=\mathrm{M}$ are as simple as
\sum_ $\{b \backslash i n \backslash m a t h c a l ~\{P\}(B, \backslash l a m b d a)\} q^{\wedge}\{E(b)\}=\backslash$ sum_ $\{$ nu \backslash in
$C(L(B), \ l a m b d a)\} q^{\wedge}\{c(\backslash n u)\} \mid p r o d _\{a, i\}\left\{m^{\wedge}\{(a)\} _i+p^{\wedge}\{(a)\} _i \backslash c h o o s e m^{\wedge}\{(a)\} _i\right\} _q$
but what it implies is surprisingly deep. For instance, it is related to the following topics.

1. Generalizing Lascoux-Schützenberger's charge and Schützenberger's involution to other root systems
2. Mysterious combinatorial bijection due to Kerov-Kirillov-Reshetikhin.
3. Calculating the number of irreducible modules in a tensor product of gl_nmodules of rectangular shapes.
4. Closed formula for a branching function corresponding to a pair of affine Lie algebra and its underlying finite-dimensional simple Lie algebra.
5. Linearizing a certain ultra-discrete nonlinear integrable system called box-ball system
6. Geometric crystals introduced by Berenstein-Kazhdan and a solution to the Yang-Baxter equation by positive birational maps.

For affine type A most (but not all!) topics are fairly well understood. However, apart from type A many conjectures are still waiting to be settled. For instance, item 2 of the above list was just worked out for type D only in this March. Taking this wonderful opportunity to talk at FPSAC meeting, I would like to persuade (especially young) people to join in this project.

