Symmetric Chain Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

Henri Mu hle*1

¹Laboratoire dínformatique de l'École polytechnique [Palaiseau] (LIX) – Ecole Polytechnique, Centre National de la Recherche Scientifique : UMR7161 – Route de Saclay 91128 PALAISEAU CEDEX, France

Abstract

We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n) for $d, n \ge 2$ admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence of this result is that these lattices have the strong Sperner property, which asserts that the cardinality of the union of the k largest antichains does not exceed the sum of the k largest ranks for all $k \le n$. Subsequently, we use a computer to complete the proof that any noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus affirmatively answering a special case of a question of D. Armstrong. This was previously established only for the Coxeter groups of type A and B.

^{*}Speaker