Cumulants of Jack symmetric functions and b-conjecture (extended abstract)

Maciej Dolega* ${ }^{* 1,2}$ and Valentin Féray*3
${ }^{1}$ Faculty of Mathematics and Computer Science [Poznan] - Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland, Poland
${ }^{2}$ Institute of Mathematics (WROCLAW) - Institute of Mathematics, University of Wroclaw, Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland, Poland
${ }^{3}$ Institut für Mathematik [Zürich] - Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract

Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series $\psi(\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{t}, 1+\beta)$ that might be interpreted as a continuous deformation of the rooted hypermap generating series. They made the following conjecture: coefficients of $\psi(\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{t}, 1+\beta)$ are polynomials in β with nonnegative integer coefficients. We prove partially this conjecture, nowadays called b-conjecture, by showing that coefficients of $\psi(\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{t}, 1+\beta)$ are polynomials in β with rational coefficients. Until now, it was only known that they are rational functions of β. A key step of the proof is a strong factorization property of Jack polynomials when $\alpha \rightarrow 0$ that may be of independent interest.

[^0]
[^0]: *Speaker

